Математика

УДК 519.6

МЕТОД ТОЧЕЧНЫХ ПОТЕНЦИАЛОВ ДЛЯ УРАВНЕНИЯ ЛАПЛАСА 1 Дроботенко М. И. 2 , Игнатьев Д. В. 3

A METHOD OF POINT POTENTIALS FOR LAPLACE EQUATION Drobotenko M. I., Ignatiev D. V.

In recent years many works have been devoted to non-grid methods of solving boundary-value problems. In this work, a method of point potentials is used to solve boundary-value problems with mixed boundary conditions. A new variant of the method is offered, which provides convergence of the approximate solution in the W_2^1 space.

В последнее время проявляется большой интерес к несеточным методам решения краевых задач. Метод, который, следуя [1,2], будем называть методом точечных потенциалов (МТП), был предложен для уравнения Лапласа в работах В. Д. Купрадзе и М. А. Алексидзе [3,4]. В [1,2] доказана сходимость МТП в пространстве L_2 для краевых задач Дирихле и Неймана, численной реализации посвящены работы [5–9]. В настоящей работе МТП распространяется на задачи со смешанными граничными условиями. Предложен вариант метода, обеспечивающий сходимость приближённого решения в W_2^1 .

1. Обозначения и вспомогательные сведения

Пусть $\Omega \subset \mathbf{R}^m$ — ограниченная область с кусочно-гладкой границей S, ν — внешняя нормаль к $S, \Omega^+ = \Omega \setminus \overline{\Omega}$. Пусть множество $X = \{x_i\}_{i=1}^{\infty}, x_i \in \Omega^+,$ удовлетворяет условию единственности для гармонических в Ω^+ функций (то есть для любой гармонической в Ω^+ функции u из $u(x_i) = 0, i = \overline{1, \infty}$, следует $u(x) = 0, x \in \Omega^+$).

Пусть
$$\varphi(x,y)=\ln\frac{1}{|x-y|}$$
 при $m=2$ и
$$\varphi(x,y)=\frac{1}{|x-y|}$$
 при $m=3.$
$$\varphi_i(y)=\varphi(x_i,y),\quad y\in\Omega,$$

$$\beta_i(y)=\frac{\partial}{\partial\nu}\varphi_i(y),\quad y\in S,\quad i=\overline{1,\infty},$$

$$L_2^c(S)=\left\{u\in L_2(S),\; (u,1)_{L_2(S)}=0\right\},$$

тогда справедлива

Лемма [1, 2]. Множество $\{\beta_i\}_{i=1}^{\infty}$ полно в $L_2^c(S)$.

2. Обоснование МТП для краевых задач со смешанными граничными условиями

Пусть
$$u\in W^1_2(\Omega),$$
 $\Delta u=0$ в $\Omega,$ $g^0(y)=u(y),$ $g^1(y)=\frac{\partial}{\partial \nu}u(y),$ $y\in S,$ $g^0,g^1\in L_2(S).$

Теорема. Имеет место сходимость

$$\begin{split} \inf_{\left\{c_i^n\right\}_{i=0}^n} \left\{ \left\| g^0 - c_0^n - \sum_{i=1}^n c_i^n \varphi_i \right\|_{L_2(S)}^2 + \\ + \left\| g^1 - \sum_{i=1}^n c_i^n \frac{\partial \varphi_i}{\partial \nu} \right\|_{L_2(S)}^2 \right\} \to 0 \end{split}$$

 $^{^{1}}$ Работа выполнена при поддержке РФФИ (06-01-96648).

²Дроботенко Михаил Иванович, канд. физ.-мат. наук, доцент кафедры численного анализа Кубанского государственного университета.

³Игнатьев Денис Владимирович, аспирант кафедры численного анализа Кубанского государственного университета.

при $n \to \infty$.

Доказательство. Так как $\Delta u=0$, то $g^1\in L^c_2(S)$, поэтому из приведённой леммы следует, что для любого $n\in \mathbf{N}$ существует такой набор $\{c^n_i\}_{i=1}^n$, что

$$\left\| g^1 - \sum_{i=1}^n c_i^n \beta_i \right\|_{L_2(S)} \to 0$$
 (2.1)

при $n \to \infty$. Обозначим

$$g_n^1(y) = \sum_{i=1}^n c_i^n \beta_i(y), \ y \in S,$$

тогда (2.1) означает, что $g_n^1 \to g^1$ в $L_2(S)$ при $n \to 0$.

Обозначим

$$c_0^n = \left(\int_S g^0 \, ds - \int_S \sum_{i=1}^n c_i^n \varphi_i(y) \, ds \right) / |S|, \quad (2.2)$$

$$u_n(y) = c_0^n + \sum_{i=1}^n c_i^n \varphi_i(y), \quad y \in \overline{\Omega}, \qquad (2.3)$$

тогда $v_n = u - u_n$ удовлетворяет равенствам

$$\Delta v_n = 0$$
 в Ω ,
$$\frac{\partial}{\partial \nu} v_n = g^1 - g_n^1 \text{ на } S.$$
 (2.4)

Из равенств (2.2),(2.3) следует равенство

$$\int_{S} u_n \, ds = \int_{S} g^0 \, ds,$$

поэтому

$$\int_{S} v_n \, ds = \int_{S} u \, ds - \int_{S} u_n \, ds = 0,$$

то есть $v_n \in L_2^c(S)$. Рассмотрим задачу

$$\Delta w = 0 \text{ B } \Omega,$$

$$\frac{\partial}{\partial \nu}w = v_n$$
 на S .

Так как $v_n \in L_2^c(S)$, то эта задача имеет решение, причём единственное с точностью до константы. Выберем эту константу так, чтобы w(M)=0, где M— некоторая точка границы S. Тогда для любой точки $y \in S$ получаем

$$w(y) = w(M) + \int_{M}^{y} (\nabla w, l) dl,$$

 $l \in \overline{\Omega}$, поэтому

$$w^{2}(y) = \left(\int_{M}^{y} (\nabla w, l) dl\right)^{2} \leqslant$$
$$\leqslant k_{1} \int_{M}^{y} (\nabla w, l)^{2} dl,$$

откуда

$$||w||_{L_2(S)} \le k_2 \left(\int_{\Omega} (\nabla w, \nabla w) dx \right)^{1/2}.$$

Оценим сверху правую часть полученного неравенства. Заметим, что

$$\int_{\Omega} (\nabla w, \nabla w) dx =
= \int_{S} w \frac{\partial w}{\partial \nu} ds - \int_{\Omega} w \Delta w dx =
= \int_{S} w \frac{\partial w}{\partial \nu} ds = \int_{S} w v_{n} ds \leqslant
\leqslant ||w||_{L_{2}(S)} ||v_{n}||_{L_{2}(S)} \leqslant
\leqslant k_{2} \left(\int_{\Omega} (\nabla w, \nabla w) dx \right)^{1/2} ||v_{n}||_{L_{2}(S)},$$

поэтому

$$\left(\int_{\Omega} (\nabla w, \nabla w) dx\right)^{1/2} \leqslant k_2 \|v_n\|_{L_2(S)},$$

откуда следует окончательное неравенство

$$||w||_{L_2(S)} \leqslant k_3 ||v_n||_{L_2(S)}.$$

Теперь с учётом (2.4) получаем

$$\int_{S} v_n v_n ds = \int_{S} v_n \frac{\partial w}{\partial \nu} ds =$$

$$= \int_{\Omega} (v_n \Delta w - \Delta v_n w) dy + \int_{S} w \frac{\partial v_n}{\partial \nu} ds =$$

$$= \int_{S} w \frac{\partial v_n}{\partial \nu} ds = \int_{S} w \left(g^1 - g_n^1 \right) ds \leqslant$$

$$\leqslant \|w\|_{L_2(S)} \|g^1 - g_n^1\|_{L_2(S)} \leqslant$$

$$\leqslant k_3 \|v_n\|_{L_2(S)} \|g^1 - g_n^1\|_{L_2(S)},$$

отсюда

$$||g^{0} - u_{n}||_{L_{2}(S)} = ||v_{n}||_{L_{2}(S)} \le$$

 $\le k_{3}||g^{1} - g_{n}^{1}||_{L_{2}(S)} \to 0 \quad (2.5)$

при $n \to \infty$. Таким образом, функция u_n , определяемая равенством (2.3) с коэффициентами $\{c_i^n\}_{i=1}^n$ и c_0^n , удовлетворяющими (2.1) и

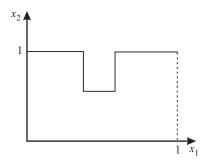


Рис. 1. Область канала

(2.2), является гармонической и имеет место Из (2.4) следует, что

$$\|u - u_n\|_{L_2(S)} + \left\| \frac{\partial u}{\partial \nu} - \frac{\partial u_n}{\partial \nu} \right\|_{L_2(S)} \to 0$$

при $n \to \infty$, из чего следует утверждение теоремы.

Пусть теперь $S = S_1 \bigcup S_2$, $S_1 \cap S_2 = \phi$. Рассмотрим краевую задачу

$$\Delta u = 0$$
 в $\Omega,$ (2.6) $u = g^0$ на $S_1,$ $\frac{\partial}{\partial \nu} u = g^1$ на $S_2.$

Согласно МТП приближённое решение u_n задачи (2.6) будем искать в виде (2.3). Из доказанной теоремы следует, что

$$\inf_{\{c_i^n\}_{i=0}^n} \left\{ \left\| g^0 - c_0^n - \sum_{i=1}^n c_i^n \varphi_i \right\|_{L_2(S_1)}^2 + \left\| g^1 - \sum_{i=1}^n c_i^n \frac{\partial \varphi_i}{\partial \nu} \right\|_{L_2(S_2)}^2 \right\} \to 0$$

при $n \to \infty$, тогда $\|u-u_n\|_{L_2(\Omega)} \to 0$ при $n \to \infty$, что позволяет применять МТП для задач со смешанными граничными условиями.

3. MTП в пространстве $W_2^1(\Omega)$

Так как

$$||u - u_n||_{L_2(\Omega)} \le k_4 ||u - u_n||_{L_2(S)},$$

то из (2.5) следует

$$||u - u_n||_{L_2(\Omega)} \le k_3 k_4 ||g^1 - g_n^1||_{L_2(S)}.$$
 (3.1)

$$\int_{\Omega} (\nabla (u - u_n), \nabla (u - u_n)) ds =$$

$$= \int_{\Omega} (\nabla v_n, \nabla v_n) ds \leqslant$$

$$\leqslant k_5 ||g^1 - g_n^1||_{L_2(S)}. \quad (3.2)$$

Объединяя (3.1) и (3.2), получаем

$$||u - u_n||_{W_2^1(\Omega)} \le k_6 ||g^1 - g_n^1||_{L_2(S)} \to 0,$$

 $n \to \infty$. Следовательно,

$$\int_{S} (\nabla (u - u_n), \nabla (u - u_n)) ds \to 0,$$

$$\int_{S} (\nabla(u - u_n), \tau)^2 ds =$$

$$= \int_{S} (\nabla(u - u_n), \nabla(u - u_n)) ds -$$

$$- \int_{S} (\nabla(u - u_n), \nu)^2 ds \to 0$$

при $n \to \infty$. Здесь $\tau(y) = (\tau_1(y), \dots, \tau_{m-1}(y))$ ортогональный базис в касательной плоскости, $(\nabla v, \tau)^2 = (\nabla v, \tau_1)^2 + \cdots + (\nabla v, \tau_{m-1})^2$. Таким образом, имеет место сходимость

$$\begin{split} \inf_{\left\{c_i^n\right\}_{i=0}^n} \left\{ \left\| g^0 - c_0^n - \sum_{i=1}^n c_i^n \varphi_i \right\|_{L_2(S_1)}^2 + \\ + \int_{S_1} \left(\nabla \left(g^0 - \sum_{i=1}^n c_i^n \varphi_i \right), \tau \right)^2 ds + \\ + \left\| g^1 - \sum_{i=1}^n c_i^n \frac{\partial \varphi_i}{\partial \nu} \right\|_{L_2(S_2)}^2 \right\} \to 0 \end{split}$$

Полученное приближённое решение краевой задачи (2.6) будет сходиться в пространстве $W_2^1(\Omega)$.

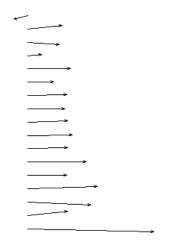


Рис. 2. $\nabla u_n^1(1, x_2)$ при n = 144

4. Результаты решения модельных задач

Рассматривается задача о течении идеальной жидкости в канале (рис. 1). Часть границы S_1 имеет вид: $S_1 = S_{10} + S_{11}$, $S_{10} = \{(x_1, x_2) \in S : x_1 = 0\}, S_{11} = \{(x_1, x_2) \in S : x_1 = 1\}$. Примем $g^0 = 0$ на S_{10} , $g^0 = -1000$ на S_{11} , $g^1 = 0$. Обозначим через u_n^1 и u_n^2 приближённые решения задачи (2.6) в пространствах L_2 и W_2^1 . Приближённое решение u_n^1 имеет вид (2.3) с коэффициентами $c^1 = \{c_i^1\}_{i=0}^n$, доставляющими минимум функционалу $F_1(c)$; u_n^2 — вид (2.3) с коэффициентами $c^2 = \{c_i^2\}_{i=0}^n$, доставляющими минимум функционалу $F_2(c)$. Здесь

$$F_1(c) = \left\| g^0 - c_0^n - \sum_{i=1}^n c_i^n \varphi_i \right\|_{L_2(S_1)}^2 + \left\| g^1 - \sum_{i=1}^n c_i^n \frac{\partial \varphi_i}{\partial \nu} \right\|_{L_2(S_2)}^2,$$

$$F_{2}(c) = \left\| g^{0} - c_{0}^{n} - \sum_{i=1}^{n} c_{i}^{n} \varphi_{i} \right\|_{L_{2}(S_{1})}^{2} + \int_{S_{1}} \left(\nabla (g^{0} - \sum_{i=1}^{n} c_{i}^{n} \varphi_{i}), \tau \right)^{2} ds + \left\| g^{1} - \sum_{i=1}^{n} c_{i}^{n} \frac{\partial \varphi_{i}}{\partial \nu} \right\|_{L_{2}(S_{2})}^{2}.$$

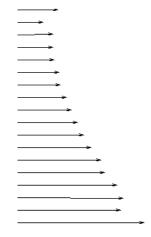


Рис. 3. $\nabla u_n^2(1, x_2)$ при n = 144

Для отыскания коэффициентов c^1 и c^2 решались следующие задачи:

$$\frac{\partial F_1(c)}{\partial c_i} = 0, \quad i = \overline{0, n}$$

$$\frac{\partial F_2(c)}{\partial c_i} = 0, \quad i = \overline{0, n}.$$

На рис. 2 и 3 изображены векторы градиентов приближённых решений u^1 и u^2 на S_{11} при n=144. Для оценки качества приближённых решений рассматривались величины $\Delta^1=F_1(c^1)$ и $\Delta^2=F_1(c^2)$, которые характеризуют отклонение граничных значений приближённого решения от заданных граничных значений.

Заметим, что на S_1 точное решение u рассматриваемой задачи удовлетворяет равенству

$$\frac{\partial u}{\partial x_2} = 0.$$

Поэтому для оценки качества приближения градиента решения использовались величины

$$\delta^k = \left\| \frac{\partial u_n^k}{\partial x_2} \right\|_{L_2(S_1)}, \quad k = 1, 2.$$

Результаты расчётов для различных n приведены в таблице.

n	Δ^1	Δ^2	δ^1	δ^2
48	0,4134	0,4172	0,1050	0,0011
144	0,1589	0,1610	0,0442	0,0002
288	0,0452	0,1129	0,0303	$1 \cdot 10^{-5}$
336	0,0252	0,0936	0,0304	$7 \cdot 10^{-6}$

Из таблицы видно, что величина δ^1 не убывает с ростом n, следовательно, ∇u_n^1 плохо приближает ∇u в Ω .

$\Lambda umepamypa$

- 1. Лежснев В. Г. Асимптотические задачи линейной гидродинамики. Краснодар: КубГУ, 1993. 92 с.
- 2. Лежнев В. Г., Данилов Е. А. Задачи плоской гидродинамики. Краснодар: КубГУ, 2000. 91 с.
- 3. Купрадзе В. Д. Методы потенциала в теории упругости. М.: ГИФМЛ, 1963. 472 с.
- 4. *Купрадзе В. Д., Алексидзе М. А.* Метод функциональных уравнений для приближенного решения некоторых граничных задач // ЖВМиМФ. № 4. 1964. С. 683–715.
- 5. Xin Li. Convergence of the method of fundametnal solutions for solving the boundary value problem of modified Helmholtz equation // ELSEVIER. Applied Mathematics and Computation. Vol. 159. 2004. P. 113–125.

- 6. Alves C. J. S., Valtchev S. S. Numerical comparison of two meshfree methods for acoustic wave scattering // Eng. Analysis Boundary Elements. Vol. 29. 2005. P. 371–382.
- 7. Alves C. J. S. Chen C. S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems // Adv. Comp. Math. Vol. 23. 2005. P. 125–142.
- 8. Karageorghis A. Fairweather G. The method of fundamental solutions for the numerical solution of the biharmonic equation // Computer physics. Vol. 69. 1987. P. 434–459.
- 9. Дроботенко М. И., Ветошкин П. В. О решении уравнений Лапласа и Пуассона методом точечных потенциалов // Компьютеризация в научных исследованиях: Сб. докладов конф. Краснодар. 2002. С. 179–186.

Статья поступила 15 января 2007 г. Кубанский Государственный Университет © Дроботенко М. И., Игнатьев Д. В., 2007