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GREEN’S FUNCTION AND A SEMI-ANALYTICAL METHOD
FOR THE CHANNEL TURBULENT FLOW!

Sumbatyan M. A.?, Ricci Fabrizio®, Vaccaro Massimo
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OVHKIINA I'PUHA U IOJYAHAJTUTUYECKUN METO/, 114 TYPBYJIEHTHOT O
TEYEHIA B KAHAJIE

Cymbarsia M. A., Puaun ®., Bakkapo M.

[Ipennaraercsa mosiyaHATUTHYIECKHIT METO/ PEIIeHNsI KJIACCHYECKON 3aJa4ui JUHAMUKU BI3KOU KU~
KOCTH O TE€UYEHHHU TyPOYJIEHTHOIO OJHOPOHOTO IIOTOKA B KAHAJIE TIOCTOSTHHON IMHMPUHBI (JBYyMepHAs 3a/1a-
4a). B cranmapTHOI NTEPAIMOHHON TPAKTOBKE IMOMIATOBOIO JIBUXKEHUS BIOJIb BPEMEHHOH TIEPEMEHHON Ha
KazKJOM IIare UTEpalydil mojydaeTcd HEKOTOpad JIMHEHHAad 3JIANTAYECKAs 3alada IeTBEPTOrO HNOPAIKa
B mojioce. B maHHOI paboTe CTPOWTCS sIBHOE pelreHne 3To# 3aja4un B KBagparypax. st aToro BHada-
Jle ¢ UCIOJIb30BAHWEM MHTErPAJILHOTO mpeobpazoBanus Pypbe BI0Ib KaHaaa cTpouTcst gpyHknus ['puna,
VIAOBJIETBOPSIOIIAsT HEOOXOIUMBIM I'DAHUIHBIM YCJIOBHUSIM JJTst (PYHKIIMH TOKa HA CTEHKaX KaHAJa. 3aTeM
pellienne BCeil 3a/1a4M BBIMUCHIBAETCS B IBHOM BHJE B TEPMUHAX 9TON dpyHKImu ['puna.

1. Let us study the classical problem about
a turbulent flow of the incompressible fluid in
a channel of constant width (two-dimensional
case). The Navier-Stokes equations written in
terms of “vorticity — stream function” have the
following form [1,2]
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The components of the velocity vector of any
fluid particle u(x,y,t), v(x,y,t) are related with
the stream function ¥ (zx,y,t) and the vorticity
((x,y,t) in the following way
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To be more specific, let us assume
that x coordinate is directed along the
channel (—oo < x < o0), and the transverse
vertical coordinate varies over the interval
—h < y < h. The width of the channel is thus

2h.

If the average expense of the fluid is known

h
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being free of z and ¢, then the mean velocity
of the flow U,, = Q/(2h) is a known constant
quantity. Besides, if we extract from the full
solution a simple structure providing the given
expense and no-slip boundary condition, then we
can rewrite equations (1)—(2) for new functions
satisfying the homogeneous conditions on the
channel walls
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For large Reynolds numbers Re = hU,,/v
the flow is turbulent, and precise simulation
of the flow providing correct calculation of the
turbulent components of the velocity vector
becomes complicated. In the meantime, the
information about oscillating components of the
velocity is of high importance, for example, in
such fields as aeroacoustics [3]. That is why a
number of direct numerical methods have been
applied to solve nonlinear system of differential
equations (1)—(2), — the methods efficient both
in laminar and turbulent ranges (the reviews of
the published works can be found in [1,2,4-8|).

One of known direct numerical methods is
the method based on classical iterations in time.
At each iteration step this is reduced to a linear
elliptic problem over spatial variables. The main
goal of the present work is to develop an explicit
solution to this elliptic problem for the channel
of constant width. The method to construct such
a solution is founded on application of Green’s
function, which is also developed explicitly in
quadratures.

2. The considered problem (1)—(2) on
variable t is a classical Cauchy problem, if one
assumes the initial conditions to be known.
Usually in the developed stream such conditions
are rarely known a priori, however numerical
experiments show that the choice of these or
those initial conditions does not affect the
qualitative character of the flow. It is known
(see, for instance, [1,2]) that a stable numerical
solution can be constructed by some iteration
processes in time, if one uses an implicit finite-
difference scheme in time (the so-called derivative
“backwards”). The simplest scheme is the Euler
one: (9¢°/0t), ~ (¢0 —¢° )/, where T is the
step in time. The substitution of this relation
to Eq. (4) with function f containing nonlinear
terms on the previous time layer and the term
containing the higher fourth-order derivatives of
function ¢ — on the new time layer, reduces the
problem to an elliptic boundary value problem of
the fourth order regarding the stream function
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This scheme is linearly convergent, both in
time and space, with the step 7 decreasing.
The second-degree convergence with respect to 7
can be achieved by using Crank-Nicolson scheme
instead of Euler’s one (see, for example, [1]). This
leads to an elliptic problem which is only slightly
different from (5)
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At last, second-degree convergence, both in
time and space, can be attained if one applies the
Crank-Nicolson scheme for the viscous term and
the Adams-Bashforth scheme for the nonlinear
term [6]
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It is easily seen that all three versions of
the iteration method can be written uniquely as
follows
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where € > 0 is a certain small parameter at
highest-order derivatives, and §,_1 is a certain
function known from the previous iterations.

3. In the case of the channel of constant width
equation (8) possesses an exact explicit solution.
In order to construct it, let us first construct
Green’s function, i.e. the solution to the following
boundary value problem

AG —eA’G =6 —2)d(n—1),
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where G = G(&n,z,y), and the Laplace
operator is applied with respect to variables
(& mn)-

Application of the Fourier transform with
respect to variable £ (£ = «) reduces equation
(9) to a linear ordinary differential equation
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of the fourth order with constant coefficients
(Fourier images are designated by tildes)

d*'G o d*G ) A
57774—(1—{—2504 )W—F(Oé + e )G:
=—€""(n—y), (10)
dG
|77 +h = 5 =0.
dT/ n==h

A particular solution to nonhomogeneous
equation (10) can easily be developed as a series
by separation of variables

5 eto — 1 1
Gp = — ( 2 27 32 2>X
h m=1 ﬁm_‘_al B?’TL_‘_OZQ

my . mTmn

LT
x sin —o= sin —-=, (11)
y=y+h, n=n+h,
/ 1 ™
ap =, Q2= 042+g7 Bm:ﬁ7

which after summation of some table series can
be rewritten in the form
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If one adds to (12) a general solution of the
homogeneous equation then one obtains for the
general solution of equation (10) the following
representation

G = ép + Cishlag(n — h)] 4+ Cashlag (n + h)] +
+ Cssh[ag(n — h)] + Cyshlag(n+ h)]. (13)

The four unknown constants C7; — Cy should
be determined from the four boundary conditions
(10). Let us note that particular solution (11),
(12) has been specially constructed so that the
conditions Gp(n = +h) = 0 are automatically
satisfied. Besides, a special choice of the structure
of homogeneous equation leads to the 4 x 4
algebraic system regarding C; — Cy such that
four elements of the matrix among 16 elements
are equal to zero. Besides, two elements among
four ones in the right-hand side vector are equal
to zero too. As a result, all four unknown

coefficients are easily expressed in explicit form,
and after some transformations the Fourier image
of the Green’s function can finally be represented
as follows ~ 4
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Obviously, Green’s function itself can be
obtained by the inverse Fourier transform applied
to Eq. (14)
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As a result, exact solution to equation (8) is
expressed in quadratures
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Conclusion. In the classical iteration
processes in time, used to calculate turbulent
flows in the channel of constant width, at each
step of iterations there arises a liner elliptic
boundary value problem of the fourth order with
singular perturbations, containing a small factor
at highest derivatives. In the present work this
elliptic problem is solved in quadratures. This
reduces the iteration process to calculation of
integrals of some functions defined at previous
steps of iteration.

It should be noted that the method proposed
in the present paper can easily be extended to
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the three-dimensional problem for the channel of 2.

constant width. In this case the exact explicit
solution of the elliptic boundary value problem,

arising at each step in time, is constructed by the 3

two-dimensional Fourier transform.

It should also be noted that the constructed
Green’s function permits reduction of the
problem for arbitrary-shaped obstacle placed g
into the turbulent flow in the channel of constant
width to a simple boundary integral equation.
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