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LOCALIZED OSCILLATIONS IN A THIN FILM WITH GROWING ISLANDS!

D. A. Indeitsev?®, Yu. A. Mochalova®, N.F. Morozov*

JIOKAJIMSBOBAHHHBIE KOJIEBAHIA B TOHKUX IIJIEHKAX ITP1 POCTE OCTPOBKOB
Nupetines . A., Mouanosa FO. A., Mopozsos H. ®.

PaccmarpuBaercs BiusiHEE TUHAMUYIECKUX (PDEKTOB HA POCT OCTPOBKOB HA IMOBEPXHOCTU TOHKUX
wieHoK. [lytleHKa MoeTmpyeTcst CI0eM KUIKOCTH C MHEPITHOHHONW CBOOOIHOM TTOBEPXHOCTBIO C PA3TUIHOMN
IUIOTHOCTHIO MACCHI U MIOBEPXHOCTHBIM HATsKEHMEM. MaTeMaTuIecKn MOCTAHOBKA 33149l CBOIUTCS K
aHaJIN3y CHCTEMbl HEJIMHEWHBIX yPaBHEHWH, ONUCHIBAIONIUX 3IBOJIOIMIO POCTa 3apPOJbIIIa OCTPOBKA U

pacipocTpaHeHue BOJIH B IIJIEHKE.

OmpeiesieHbl YCIOBUs CYIIECTBOBAHMS JIOKAJIN30BAHHBIX COOCTBEHHBIX (POPM KOJIEOAHUI COOTBET-
CTBYIOIIEN ClIeKTpaIbHOI 3amaun. [lokaszaHno, 9To JIoKau3aus BOJIH B O0JIACTH OCTPOBKA, IPUBOIUT K
YBEJMIEHUIO CKOPOCTH POCTa MACCHI OCTPOBKA, (yBEJUUEHHUIO €r0 pa3Mepa Ha MOBEPXHOCTH TIJICHKH).

1. Introduction

The problems under discussion are related
to localized waves near growing islands on a
thin film. Before formulating the problem, a few
words should be said about how we came to it
and then the physical model used as the basis is
to be described.

Thin film condensation and growth of films
are very complex multistage processes [1]. We
are interested in the stage of nucleations and
separate growth of islands. That is, the span
of time when on the film surface islands of new
phase are nucleated and start growing. Here at-
tention is focused on what is the driving force
and the mechanism of island nucleation. We
proceed from the model that the island nucle-
ation is stipulated by transfer of the elastic stress
energy of the film, which induces surface diffu-
sion of atoms from more stressed to less stressed
regions [2]. Some details of the physical model.

1. When vapor starts condensing on rigid sub-
strate the film first flows over substrate and
behaves like fluid (so-call wetting layer).

2. Materials of the substrate and the wetting

layer have different lattice parameters, and the
elastic energy increases with film growth.

3. When the elastic energy exceeds the wetting

energy, it relaxes. One of the possible ways of
relaxation is formation and growth of nuclei
on the wetting layer. Due to this, the elastic
energy of the film reduces.

4. The nucleation process takes some time to be

completed.

For this model, the velocity of the island
growth is proportional to the gradient of the
elastic energy of the film U, and the evolution-
ary equation (see [1] and the references therein)
is as follows

dl _ DSv
dt kT,

v, (1.1)

where V is island volume, D is coefficient of dif-
fusion, S is area of diffusion front, v is atom
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volume, kp is Boltzmann constant, T, is temper-
ature. The elastic energy is defined by the static
stress state of the film structure, and dynamical
wave processes in the wetting layer are not taken
into account. This seems reasonable but only
at first sight. Both the rate of nucleation and
growth of islands depend on many factors (the
material constituting film and substrate, tem-
perature etc.). But in fact the rate of nucleation
is much lower than the speed of wave propaga-
tion in the film. And very soon forced radiating
waves decay while the islands continue to grow.
If localized waves appear in the film, the situa-
tion is quite different. A localized oscillation at
the special frequency does not decay with time.
This can lead to additional elastic stress in the
domain of islands, and may have influence on
the rate of their growth. To study this problem
is the aim of the present work. We are not going
to describe complicated physical processes. We
are only interested in qualitative results, i.e. to
show that dynamical disturbances influence the
island growth.

It should be noted that any type of dynam-
ical perturbation in the film, as a rule, gives
rise to both acoustic and gravitation surface
waves. But having the frequency Q = v/h,
where v is speed of sound and h is film thickness
(h ~ 107% cm), acoustic waves can not be local-
ized near the islands of such size (the radius of
island R ~ 10~ cm). As for gravitation waves,
they are characterized by a low—frequency spec-
trum and, above all, are capable of being local-
ized near the islands. The effect of gravitation
is well known from a number of works on crystal
growth in the outer space.

We suggest considering the wetting layer as
an open waveguide having discrete inclusions
with variable mass. The waveguide is simulated
by a two-dimensional wetting layer of constant
depth h. The layer is occupied by inviscid in-
compressible heavy fluid covered by an inertial
free surface where islands grow. The inertial sur-
face is an elastic membrane with variable den-
sity of mass distribution. The wetting layer is
bounded from below by a flat rigid substrate.
Therefore, the present work is aimed at estab-
lishing the existence of localized modes for this
waveguide and to show the influence of its modes
on the growth of islands.

The plan of the paper is as follows. The
time-domain problem for the forced motion of
the fluid layer with growing islands on the in-
ertial surface is formulated in § 2. Mathemati-
cally, there is a non-linear problem which cov-
ers both the evolutionary equation for the grow-
ing islands and the boundary value problem for
the fluid layer. The trapped mode solutions
to the corresponding frequency-domain problem
are given in § 3 (under the assumption that
the mass of islands is a constant parameter).
The method for the time-domain problem to be
solved in the frame of shallow water approxima-
tion is outlined in § 4. For the constant mass of
islands the large-time asymptotics of the prob-
lem is described in § 4.1, the results for the grow-
ing mass are presented and discussed in § 4.2 and
§ 4.3.

2. Formulation

Cartesian coordinates (x,y) are chosen with
y directed vertically upwards and with the origin
in the inertial surface. In the linearized time-
domain problem, the fluid motion is described
by the velocity potential ®(z,y,t) that satisfies
Laplace’s equation
Vie =0 (2.2)
in the fluid and also the impermeability condi-
tion

®, =0 on y=—h. (2.3)

The free surface elevation of the fluid n(z,t) is
related to ® through the free surface conditions

ne = ®, and
ez — (mne), = p®Pt + pgn + P(t)d(z) (2.4)
on y =20,

where T is coefficient of surface tension, m is
membrane mass per unit length, p is density of
fluid, 6(z) is Dirac delta—function. Generally
speaking, the fluid motion may be forced by a
vibration of the substrate or falling drops. In
our consideration the motion is caused by the
external force P(t) applied at the point (0,0).
The initial conditions is

®(2,0,0) = By(,0,0) = 0. (2.5)
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Figure 1. A schematic of islands on a film

For any fixed time the velocity potential ® sat-
isfies the condition at infinity

Ve -0 as |z|— oo (2.6)

Let two growing spherical islands of radius R be
centered at (—{,0) and ({,0). They have equal
mass. The size of the growth islands is small,
then m can be written as follows

m(@,t) = mo + M(t) [6(z — 1) + 8(z + 1],
(2.7)
where myg is constant initial surface mass per
unit length. Assuming the island density to be
not variable, we rewrite equation (1.1) so that it
would define the mass of the growth island M.
It can be defined through the density of elastic
energy U(x,0,t) by the evolutionary equation

M
dd—t:DU(:v,t) at o = =£l,

y=0 and M(0)= My,

where D = Drpv/kyT,. We split U(x,t) into
two terms

(2.8)

U=Uy+ Uy, (2.9)

where Uj is elastic energy defined by static stress
state of the layer, the dynamical component Uy
is a result of wave propagation in the inertial
surface

Up=r(Ms— M),

Lo 1 o
= iT% + §pgn at x = =£l.
Here k is coefficient defined by the elas-
tic characteristics of the inertial surface and
M, = npR?h.

Thus the motion of the film with growing in-
clusions is described by the time-domain prob-
lem (2.2)—(2.6) and the evolutionary equation
(2.8)—(2.10). We assume that all functions are
even in .

0, (2.10)

3. Trapped modes
for the frequency-domain problem

Consider the case when the island mass M
is assumed to be a constant parameter. All
motions are harmonic in time and have fre-
quency w and ®(z,y,t) = Re{p(z,y)e '},
n(z,t) = Re{n(z)e™'}. The function n(z) is
omitted from the free surface conditions (2.4).
Then the problem for the velocity potential
¢(x,y) corresponding the problem (2.2)—(2.6) is

Vip =0 (3.11)
for —oo < x <00, —h <y <0,

py=0 ony=—h, (3.12)

TPuuy — [pg — mow? | ¢y + pw? o =
= -Mw? 5z —1)+6(x+1)]p, (3.13)

ony =0,
Ve — 0 as |z| — 0. (3.14)

It will be shown below that there exists trapped
mode solution for the problem (3.11)—(3.14).
Note. In general, trapped modes are free
oscillations of unbounded fluid for which the
wave motion is confined to vicinity of fixed in-
clusions. Thus the energy of the motion is
finite and there is no radiation of energy to
the infinity. Such modes are non-trivial solu-
tions of the linearized water-wave problem in
the frequency domain [3]. Many publications
are available where some particular structural
geometries which support the trapped modes
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have been constructed (see [4] and the references
therein), but no general proof for trapped mode
existence has been found. The later also refers to
the problem (3.11)-(3.14), which describes the
fluid covered by the inertial surface.

Problem for the Fourler transform of the

velocity potential o* (y) = [7 too e~k gy
yields
d2 F 5 F
az ke =0
for —h <y <0,
d F
[Tk‘2 + pg — m0w2] i pwpt =
dt
_ A[ ~Kl | kl] Mow?
for y = 0,
d F
% =0 fory=—h,
where A(= ¢,(1)) is an arbitrary constant. This
has a solution
v(y) =

Ale ™ 4 ] §
[(Tk? + pg — mow?) k tanh kh — pw?|
Mw? cosh k(y + h)
cosh kh

Applying the inverse transform, we arrive at

o(z,y) = AMw? [G(|x —1|,y)+
+G(lz+1,y)], (3.15)
where
G(z,y) = iCpekole—¢l cosh ko(y + h)+
+ Z Cjekile = cos kj (y + h),
j=1
2pg(co k2 p2w4) 12
Co=—

h(co?kE— pPwt) + pw?(co + 2Tk3)’

2pg(cj2k2 + p2w4) 1/2

Cj=-— :
! h(cﬁkzjz + pPw?) + pw?(c; — 2Tk]2.)

co = pg+ Tk(z) — mow?,

cj = pg — Tk:]2~ — mow?

and

ko, “ik1, <iko, ..., ik, ...

is the sequence of roots of the dispersion relation

pw?

ktanh kh = .
an T k2 — mow? + pg

The velocity potential (3.15) can split into
two terms. One is outgoing progressive waves.
The other behaves like standing waves which de-
cay at the infinity. We should cancel the out-
going waves to construct trapped mode solu-
tion. From this we can have the sequence of
“so-called” trapped frequencies. With these fre-
quencies there are no outgoing waves at the in-
finity.

The outgoing wave is cancelled when

Rk

and the trapped frequencies are

n=12...

5 (TrE+ pg)r, tanhr,h
w,. =

n

1
p + mory tanhr,h (3.16)

O<w <wr<...<wp<...,
Wy, — 00 as n — 00.
The trapped frequencies (3.16) are point eigen-

values of the problem (3.11)-(3.14) if and only
if we choose the island mass as follows

M, =
Qa; 1+e 2kl B
— g wzz in ( ) 2
= 1hozjn—|—pw (cj—2Tkj)
n=12... (3.17)

where o, = c? k‘JQ + pPwi.
Thus, each n-th trapped frequency (3.16) is
supported by M, (3.17) and

My >Mo>...>M,>..., M,—0

as n — oo.
The trapped mode solution at w, has the
form

A—FZB]- for |x| < I,
j=1

Zéj for |z| > 1,

J=1

gDn(ﬂf, Y, wn) = AangL
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where A = (=1)"T1Cy cos kox cosh ko(y + h),
B = Cj [e7kile=ll - e=kile+l] cos k;(y + h).

The coefficients Cy, C; have been deter-
mined earlier. Thus, it is shown that there is
only one trapped mode at the particular fre-
quency (3.16) for the fixed inclusion M defined
in (3.17).

Now we arrive back to the initial-value prob-
lem (2.2)-(2.6).

4. Shallow water approximation
For the shallow water approximation, poten-

tial ®(x,t) (= ®(x,0,t)) is introduced to the
problem

L(g) = Téxzxx - mogx:ctt + %6& - 963051: =

= [M(5) (S — 1) + 6z + 1)),
+ Po(x —§).

+
(4.18)

&, 0, — 0 as x| — oo for fixed ¢,
®(z,0) = ®4(z,0) = 0.

The corresponding frequency-domain prob-
lem is denoted by L ().

4.1. Solution for long-duration and constant
mass of the islands

We begin with the case of the constant mass
of island. For the frequency-domain problem
L, (¢) the obtained results (see §3) occur un-
der the assumption kh < 1. We fix an inclusion
M = M, which supports a trapped mode at the
frequency wy = w; defined in (3.16). We assume
that the solution of (4.18) can be expressed by
the expansion [5]

B(x,t) = oz, w)q(t)+
+/0 @w(-r)Qw(t)dwv (4'19)

Here ¢(t), qu(t) are unknown functions and
o(x,wy) is the eigenfunction of L (p) asso-
ciated with the discrete eigenvalue w, = wi
corresponding to the particular inclusion M,
(3.17), wu(z) = p(z,w) is the family of symmet-
ric eigenfunctions associated with eigenvalues w
(called radiation modes). It can be shown that
the radiation modes are orthogonal in the sense

of generalized functions. The trapped mode and
the radiation modes satisfy the following inte-
gral identity

/+OO‘P Pu— haz% =
w 0 o2

dz

 2hM(x—=1) [ 5 82%)_ 9 827g0

o w?—w? WP apr T gz |
(4.20)

The last integral identity is the generalized con-
dition of the orthogonality of the trapped mode
to the radiation modes. Substituting (4.19) to
(4.18), multiplying by ¢(x,w,), integrating with
respect to x and using (4.20) and dispersion re-
lation, we arrive at

d*q 2
2 Twe= Q:P(1) (4.21)
with initial conditions ¢(0) = dg(0)/dt = 0.
Here
+oo
Qs = p(ws) [Z/ ordz—

1
+o0
— mO/ widx — 2M (D) p(1)

—0o0

An equation analogous to (4.21) can be written
for g, (t). Then

_ @

Wi

Golt) = % /O P(r)sinw(t — 7)dr,

oft) /0 P(r) sinw, (t — 7)dr,

and by the Riemann-Lebesque lemma it may be
shown that

00 t
/ gpw(:z)/ P(1)sinw(t — 7)drdw — 0
0 0
as t — o0.

Then for a long period of time (comparable
with duration of island formation) the radiation
modes decay and the solution to the problem
(4.18) is reduced to the localized mode

O(z,t) = W/O P(7)sinw,(t — 7)dr

as t — 00.
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Thus, the force P excites the trapped mode and
in the absence of friction it persists for all time.
The similar results were obtained by [3]. They
analyzed excitation of trapped water waves by
the forced motion of a surface-piercing structure
and showed that almost any forcing, whether
sustained or transitory, will excite the trapped
mode which does not decay at large time.

For the variable mass of the island we must
consider the problem (4.18) and evolutionary
equation (2.8)—(2.10) simultaneously.

4.2. Variable mass of the island

Let the island mass be written in the follow-

ing form

M(t) = M, + u(t), (4.22)

where M, is initial mass of inclusion supporting
the trapped mode at frequency w, = w; defined
in (3.16). Then the problem for the potential

O(x,t) is

(4.23)

®, &, -0 as
®(z,0) = &4(,0) = 0.

|x| — oo for fixed ft,

The evolutionary equation takes the form

dp  — 1, 5 1 9
H_D - o7 1
m k(e — 1) + 517 + 5 PgN
at x==+l,pu(0)=0, (4.24)
and

dn —

O 3, 4.25

g (4.25)

Here p. = Mg — M,. After introducing nondi-
mentional time t; = \/g/ht, equation (4.24) can
be written as

dp O |:h:‘ﬁ7 ) Th o 1
- = — (s — ) + ——mp + Sph
i, ah | g (:u H g77 pnmn

Here the coefficient vy = Dg is proportional to
the growth rate of the island. The speed of

wave propagation is known to significantly ex-
ceed the rate of nucleation and v/gh > vg and so
we can take € = vg/y/gh as a small parameter.
This allows to assume that the trapped mode
which persists for all time (in the absence of fric-
tion) can significantly affect the island growth,
in which case the unknown velocity potential ®
can be found, using only the first term in the
expansion (4.19)

(I)(x7 tl) = ¢($7w*)Q(t1)'

Bellow nondimantional time #; will be written
without subscript. Consider a simple example of
the external force P(t) = P§(t) Thus the prob-
lem (4.23)—(4.25) is reduced to

[1—5L]@+62 =0 (4.26)
/’L dt2 *q - ) .
dp Kb Th o 1
& —e[g (u* u)+ % e + 50
at @ = +l, (4.27)
dn
—L = 0. 4.2
% CPazq (4.28)
Here @? = w2h/g, ¢ = \/gh,
2[7, (D]
I A
€ A,
where
p 400 400
=2 / [7]2de + mo / 7, 2da+

The initial conditions are

dq(0)
=0, ——~2=F
9(0)=0, — ;
=0,

12(0)

where F' = Ph/g. We add the small parameter
€ to equation (4.26). This, as can be shown, is
quite correct.

Then, using the multiple scale method we
take two scale of time ¢t and 7 = et and apply
expressions of unknown functions in the small
parameter €

Q(taT):q0+€q1+"'7
p(t, ) = po +epr + ...,
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n(t,7)=mnmo+em+...

Let us restrict further consideration to two ap-

proximations. For the zero approximation we
get
82(10 2 dCIO<0)
— +wiq0 =0 0)=0 =F
2 + Wiqo ) QO( ) ) dt 3
o
— =0, 0) =0,
ot 10(0)
Ino — .
ot Pzrxdo-

Here pg is independent of ¢ and the first ap-
proximation has the form

Pq %qo %qo
giz T W = Lo = 2aa T
9q1(0)  0q0(0)
— 4.29
ot or ’ ( )
Our  Ouo
R R
1 1
t5 Tymo2 + §ph77§ (4.30)
at x = £,
om oo
—_— = —— = 221 - 4.31
5 5, — C¥uall (4.31)

Here kg = kh/g, Ty, = Th/g. Then further
application of the multiple scale method yields
that

po = (px + 8) B, (4.32)

here B, = 1 — exp [—KyT],

qo(th)
_r L(pe + B)
[

t
+ 2K

Sin Wy
g

L(ps
w1 = Bfg sin 2w, |t + M (B* + HgT) .
2004 2Ky

2102
Here § = 257 [TyedenlD) + phek (D).

4.3. Influence of localization waves on the
island growth

The island mass M(t) then follows from
(4.22) and, after some manipulation, it is found
that

M(t) = My + (M, — M,) exp[—ergt]+
+ B{l — exp|—ergt]+

L(Ms B M* + /8) %
2K

13
+ 259 sin 200,

W

t+

X (1 +ekgt — exp[—s@t])

} + O(e?).

The last expression describes the island growth
qualitatively. The first terms correspond to the
island growth caused by the static stress only.
The influence on the island growth exerted by
the trapped wave is expressed by the third term,
with the constant 8 as a factor.

Thus, the existence of localized wave on the
film surface leads to the increase in the rate of
island growth. When determining the size of
growing islands, this effect should be taken into
account.

5. Conclusion

A thin film with growing islands has
been modelled as the two—dimensional non—
stationary problem for a fluid layer with the
inertial free surface on which there are two
growing mass inclusions. For the corresponding
frequency—domain problem there was obtained
a trapped mode solution. It was shown that in
the time domain problem perturbation force will
excite the localized wave near the islands and in
the absence of friction the wave will persist for
all time. This creates additional stress in the
film and leads to the increase in the rate of is-
land growth.
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