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LOCALIZED OSCILLATIONS IN A THIN FILM WITH GROWING ISLANDS1

D.A. Indeitsev2, Yu.A. Mochalova3, N.F. Morozov4

ЛОКАЛИЗОВАННЫЕ КОЛЕБАНИЯ В ТОНКИХ ПЛЕНКАХ ПРИ РОСТЕ ОСТРОВКОВ
Индейцев Д.А., Мочалова Ю.А., Морозов Н. Ф.

Рассматривается влияние динамических эффектов на рост островков на поверхности тонких
пленок. Пленка моделируется слоем жидкости с инерционной свободной поверхностью с различной
плотностью массы и поверхностным натяжением. Математически постановка задачи сводится к
анализу системы нелинейных уравнений, описывающих эволюцию роста зародыша островка и
распространение волн в пленке.

Определены условия существования локализованных собственных форм колебаний соответ-
ствующей спектральной задачи. Показано, что локализация волн в области островка приводит к
увеличению скорости роста массы островка (увеличению его размера на поверхности пленки).

1. Introduction

The problems under discussion are related
to localized waves near growing islands on a
thin film. Before formulating the problem, a few
words should be said about how we came to it
and then the physical model used as the basis is
to be described.

Thin film condensation and growth of films
are very complex multistage processes [1]. We
are interested in the stage of nucleations and
separate growth of islands. That is, the span
of time when on the film surface islands of new
phase are nucleated and start growing. Here at-
tention is focused on what is the driving force
and the mechanism of island nucleation. We
proceed from the model that the island nucle-
ation is stipulated by transfer of the elastic stress
energy of the film, which induces surface diffu-
sion of atoms from more stressed to less stressed
regions [2]. Some details of the physical model.

1. When vapor starts condensing on rigid sub-
strate the film first flows over substrate and
behaves like fluid (so-call wetting layer).

2. Materials of the substrate and the wetting
layer have different lattice parameters, and the
elastic energy increases with film growth.

3. When the elastic energy exceeds the wetting
energy, it relaxes. One of the possible ways of
relaxation is formation and growth of nuclei
on the wetting layer. Due to this, the elastic
energy of the film reduces.

4. The nucleation process takes some time to be
completed.

For this model, the velocity of the island
growth is proportional to the gradient of the
elastic energy of the film U , and the evolution-
ary equation (see [1] and the references therein)
is as follows

dV

dt
=
DSν

kbTa
∇U, (1.1)

where V is island volume, D is coefficient of dif-
fusion, S is area of diffusion front, ν is atom
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volume, kb is Boltzmann constant, Ta is temper-
ature. The elastic energy is defined by the static
stress state of the film structure, and dynamical
wave processes in the wetting layer are not taken
into account. This seems reasonable but only
at first sight. Both the rate of nucleation and
growth of islands depend on many factors (the
material constituting film and substrate, tem-
perature etc.). But in fact the rate of nucleation
is much lower than the speed of wave propaga-
tion in the film. And very soon forced radiating
waves decay while the islands continue to grow.
If localized waves appear in the film, the situa-
tion is quite different. A localized oscillation at
the special frequency does not decay with time.
This can lead to additional elastic stress in the
domain of islands, and may have influence on
the rate of their growth. To study this problem
is the aim of the present work. We are not going
to describe complicated physical processes. We
are only interested in qualitative results, i.e. to
show that dynamical disturbances influence the
island growth.

It should be noted that any type of dynam-
ical perturbation in the film, as a rule, gives
rise to both acoustic and gravitation surface
waves. But having the frequency Ω = v/h,
where v is speed of sound and h is film thickness
(h ≈ 10−6 cm), acoustic waves can not be local-
ized near the islands of such size (the radius of
island R ≈ 10−7 cm). As for gravitation waves,
they are characterized by a low–frequency spec-
trum and, above all, are capable of being local-
ized near the islands. The effect of gravitation
is well known from a number of works on crystal
growth in the outer space.

We suggest considering the wetting layer as
an open waveguide having discrete inclusions
with variable mass. The waveguide is simulated
by a two-dimensional wetting layer of constant
depth h. The layer is occupied by inviscid in-
compressible heavy fluid covered by an inertial
free surface where islands grow. The inertial sur-
face is an elastic membrane with variable den-
sity of mass distribution. The wetting layer is
bounded from below by a flat rigid substrate.
Therefore, the present work is aimed at estab-
lishing the existence of localized modes for this
waveguide and to show the influence of its modes
on the growth of islands.

The plan of the paper is as follows. The
time-domain problem for the forced motion of
the fluid layer with growing islands on the in-
ertial surface is formulated in § 2. Mathemati-
cally, there is a non-linear problem which cov-
ers both the evolutionary equation for the grow-
ing islands and the boundary value problem for
the fluid layer. The trapped mode solutions
to the corresponding frequency-domain problem
are given in § 3 (under the assumption that
the mass of islands is a constant parameter).
The method for the time-domain problem to be
solved in the frame of shallow water approxima-
tion is outlined in § 4. For the constant mass of
islands the large-time asymptotics of the prob-
lem is described in § 4.1, the results for the grow-
ing mass are presented and discussed in § 4.2 and
§ 4.3.

2. Formulation

Cartesian coordinates (x, y) are chosen with
y directed vertically upwards and with the origin
in the inertial surface. In the linearized time-
domain problem, the fluid motion is described
by the velocity potential Φ(x, y, t) that satisfies
Laplace’s equation

∇2Φ = 0 (2.2)

in the fluid and also the impermeability condi-
tion

Φy = 0 on y = −h. (2.3)

The free surface elevation of the fluid η(x, t) is
related to Φ through the free surface conditions

ηt = Φy and

Tηxx − (mηt)t = ρΦt + ρgη + P (t)δ(x)

on y = 0,

(2.4)

where T is coefficient of surface tension, m is
membrane mass per unit length, ρ is density of
fluid, δ(x) is Dirac delta–function. Generally
speaking, the fluid motion may be forced by a
vibration of the substrate or falling drops. In
our consideration the motion is caused by the
external force P (t) applied at the point (0, 0).
The initial conditions is

Φ(x, 0, 0) = Φt(x, 0, 0) = 0. (2.5)
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Figure 1. A schematic of islands on a film

For any fixed time the velocity potential Φ sat-
isfies the condition at infinity

∇Φ→ 0 as |x| → ∞. (2.6)

Let two growing spherical islands of radius R be
centered at (−l, 0) and (l, 0). They have equal
mass. The size of the growth islands is small,
then m can be written as follows

m(x, t) = m0 +M(t) [δ(x− l) + δ(x+ l)] ,
(2.7)

where m0 is constant initial surface mass per
unit length. Assuming the island density to be
not variable, we rewrite equation (1.1) so that it
would define the mass of the growth island M .
It can be defined through the density of elastic
energy U(x, 0, t) by the evolutionary equation

dM

dt
= DU(x, t) at x = ±l,

y = 0 and M(0) = M0,
(2.8)

where D = Dπρ ν/kb Ta. We split U(x, t) into
two terms

U = U0 + Ud, (2.9)

where U0 is elastic energy defined by static stress
state of the layer, the dynamical component Ud
is a result of wave propagation in the inertial
surface

U0 = κ (Ms −M) ,

Ud =
1

2
Tη2x +

1

2
ρgη2 at x = ±l.

(2.10)

Here κ is coefficient defined by the elas-
tic characteristics of the inertial surface and
Ms = πρR2h.

Thus the motion of the film with growing in-
clusions is described by the time-domain prob-
lem (2.2)–(2.6) and the evolutionary equation
(2.8)–(2.10). We assume that all functions are
even in x.

3. Trapped modes
for the frequency-domain problem

Consider the case when the island mass M
is assumed to be a constant parameter. All
motions are harmonic in time and have fre-
quency ω and Φ(x, y, t) = Re

{
ϕ(x, y)e−iωt},

η(x, t) = Re
{
η(x)e−iωt}. The function η(x) is

omitted from the free surface conditions (2.4).
Then the problem for the velocity potential
ϕ(x, y) corresponding the problem (2.2)–(2.6) is

∇2ϕ = 0 (3.11)

for −∞ < x <∞, −h < y < 0,

ϕy = 0 on y = −h, (3.12)

Tϕxxy −
[
ρg −m0ω

2
]
ϕy + ρω2 ϕ =

= −Mω2 [δ(x− l) + δ(x+ l)]ϕy (3.13)

on y = 0,

∇ϕ→ 0 as |x| → ∞. (3.14)

It will be shown below that there exists trapped
mode solution for the problem (3.11)–(3.14).

Note. In general, trapped modes are free
oscillations of unbounded fluid for which the
wave motion is confined to vicinity of fixed in-
clusions. Thus the energy of the motion is
finite and there is no radiation of energy to
the infinity. Such modes are non-trivial solu-
tions of the linearized water-wave problem in
the frequency domain [3]. Many publications
are available where some particular structural
geometries which support the trapped modes
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have been constructed (see [4] and the references
therein), but no general proof for trapped mode
existence has been found. The later also refers to
the problem (3.11)–(3.14), which describes the
fluid covered by the inertial surface.

Problem for the Fourier transform of the
velocity potential ϕF (y) =

∫ +∞
−∞ ϕ(x, y)e−ikx dx

yields
d2ϕF

dt2
− k2ϕF = 0

for −h < y < 0,

[
Tk2 + ρg −m0ω

2
] dϕF

dt
− ρω2ϕF =

= A
[
e−kl + ekl

]
Mω2

for y = 0,

dϕF

dt
= 0 for y = −h,

where A(= ϕy(l)) is an arbitrary constant. This
has a solution

ϕF (y) =

=
A
[
e−kl + ekl

][(
Tk2 + ρg −m0ω2

)
k tanh kh− ρω2

]×
× Mω2 cosh k(y + h)

cosh kh
.

Applying the inverse transform, we arrive at

ϕ(x, y) = AMω2
[
G(|x− l|, y)+

+G(|x+ l|, y)
]
, (3.15)

where

G(x, y) = iC0e
−ik0|x−ξ| cosh k0(y + h)+

+

∞∑
j=1

Cje
−kj |x−ξ| cos kj(y + h),

C0 = −
2ρg
(
c0

2k20 − ρ2ω4
)1/2

h
(
c02k20− ρ2ω4

)
+ ρω2(c0 + 2Tk20)

,

Cj = −
2ρg
(
cj

2k2j + ρ2ω4
)1/2

h
(
cj2k2j + ρ2ω4

)
+ ρω2(cj − 2Tk2j )

,

c0 = ρg + T k20 −m0ω
2,

cj = ρg − Tk2j −m0ω
2

and

k0, ±ik1, ±ik2, ..., ±ikn, ...

is the sequence of roots of the dispersion relation

k tanh kh =
ρω2

T k2 −m0ω2 + ρg
.

The velocity potential (3.15) can split into
two terms. One is outgoing progressive waves.
The other behaves like standing waves which de-
cay at the infinity. We should cancel the out-
going waves to construct trapped mode solu-
tion. From this we can have the sequence of
“so-called” trapped frequencies. With these fre-
quencies there are no outgoing waves at the in-
finity.

The outgoing wave is cancelled when

rn =
(
n− 1

2

) π
l
, n = 1, 2, . . .

and the trapped frequencies are

ω2
n =

(T r2n + ρg)rn tanh rnh

ρ+m0rn tanh rnh
, (3.16)

0 < ω1 < ω2 < . . . < ωn < . . . ,

ωn →∞ as n→∞.

The trapped frequencies (3.16) are point eigen-
values of the problem (3.11)–(3.14) if and only
if we choose the island mass as follows

Mn =

= 2ρg

ω2
n

∞∑
j=1

αjn
(
1 + e−2kj l

)
hαjn + ρω2

n

(
cj − 2Tk2j

)
−1 ,

n = 1, 2, . . . (3.17)

where αjn = c2j k
2
j + ρ2ω4

n.
Thus, each n-th trapped frequency (3.16) is

supported by Mn (3.17) and

M1 > M2 > . . . > Mn > . . . , Mn → 0

as n→∞.
The trapped mode solution at ωn has the

form

ϕn(x, y, ωn) = AMnω
2
n


Ã+

∞∑
j=1

B̃j for |x| < l,

∞∑
j=1

B̃j for |x| > l,
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where Ã = (−1)n+1C0 cos k0x cosh k0(y + h),
B̃ = Cj

[
e−kj |x−l| + e−kj |x+l|

]
cos kj(y + h).

The coefficients C0, Cj have been deter-
mined earlier. Thus, it is shown that there is
only one trapped mode at the particular fre-
quency (3.16) for the fixed inclusion M defined
in (3.17).

Now we arrive back to the initial-value prob-
lem (2.2)–(2.6).

4. Shallow water approximation

For the shallow water approximation, poten-
tial Φ(x, t) (≡ Φ(x, 0, t)) is introduced to the
problem

L(Φ) = TΦxxxx −m0Φxxtt +
ρ

h
Φtt − gΦxx =

=
[
M(t)(δ(x− l) + δ(x+ l))Φxx

]
tt

+

+ Pδ(x− ξ). (4.18)

Φ,Φx → 0 as |x| → ∞ for fixed t,

Φ(x, 0) = Φt(x, 0) = 0.

The corresponding frequency-domain prob-
lem is denoted by Lω(ϕ).

4.1. Solution for long-duration and constant
mass of the islands

We begin with the case of the constant mass
of island. For the frequency-domain problem
Lω(ϕ) the obtained results (see §3) occur un-
der the assumption kh� 1. We fix an inclusion
M = M∗ which supports a trapped mode at the
frequency ω∗ = ω1 defined in (3.16). We assume
that the solution of (4.18) can be expressed by
the expansion [5]

Φ(x, t) = ϕ(x, ω∗)q(t)+

+

∫ ∞
0

ϕω(x)qω(t)dω, (4.19)

Here q(t), qω(t) are unknown functions and
ϕ(x, ω∗) is the eigenfunction of Lω(ϕ) asso-
ciated with the discrete eigenvalue ω∗ = ω1

corresponding to the particular inclusion M∗
(3.17), ϕω(x) = ϕ(x, ω) is the family of symmet-
ric eigenfunctions associated with eigenvalues ω
(called radiation modes). It can be shown that
the radiation modes are orthogonal in the sense

of generalized functions. The trapped mode and
the radiation modes satisfy the following inte-
gral identity∫ +∞

−∞
ϕ

[
ϕω−m0h

∂2ϕω
∂x2

]
dx =

=
2hM∗δ(x− l)
ω2 − ω2

∗

[
ω2ϕ

∂2ϕω
∂x2

−ω2
∗ϕω

∂2ϕ

∂x2

]
.

(4.20)

The last integral identity is the generalized con-
dition of the orthogonality of the trapped mode
to the radiation modes. Substituting (4.19) to
(4.18), multiplying by ϕ(x, ω∗), integrating with
respect to x and using (4.20) and dispersion re-
lation, we arrive at

d2q

dt2
+ ω2

∗q = Q∗P (t) (4.21)

with initial conditions q(0) = dq(0)/dt = 0.
Here

Q∗ = ϕ(ω∗)

[
ρ

h

∫ +∞

−∞
ϕ2dx−

−m0

∫ +∞

−∞
ϕ2
xdx− 2M∗ϕxx(l)ϕ(l)

]−1
.

An equation analogous to (4.21) can be written
for qω(t). Then

q(t) =
Q∗
ω∗

∫ t

0
P (τ) sinω∗(t− τ)dτ,

qω(t) =
Qω
ω

∫ t

0
P (τ) sinω(t− τ)dτ,

and by the Riemann–Lebesque lemma it may be
shown that∫ ∞

0
ϕω(x)

∫ t

0
P (τ) sinω(t− τ)dτdω → 0

as t→∞.

Then for a long period of time (comparable
with duration of island formation) the radiation
modes decay and the solution to the problem
(4.18) is reduced to the localized mode

Φ(x, t) =
Q∗ϕ(x, ω∗)

ω∗

∫ t

0
P (τ) sinω∗(t− τ)dτ

as t→∞.
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Thus, the force P excites the trapped mode and
in the absence of friction it persists for all time.
The similar results were obtained by [3]. They
analyzed excitation of trapped water waves by
the forced motion of a surface-piercing structure
and showed that almost any forcing, whether
sustained or transitory, will excite the trapped
mode which does not decay at large time.

For the variable mass of the island we must
consider the problem (4.18) and evolutionary
equation (2.8)–(2.10) simultaneously.

4.2. Variable mass of the island

Let the island mass be written in the follow-
ing form

M(t) = M∗ + µ(t), (4.22)

where M∗ is initial mass of inclusion supporting
the trapped mode at frequency ω∗ = ω1 defined
in (3.16). Then the problem for the potential
Φ(x, t) is

L(Φ)−M∗
[
δ(x− l) + δ(x+ l)

]
Φxxtt =

= µ(t)
[
δ(x− l) + δ(x+ l)

]
Φxxtt+

+ P (t)δ(x− ξ) (4.23)

Φ, Φx → 0 as |x| → ∞ for fixed t,

Φ(x, 0) = Φt(x, 0) = 0.

The evolutionary equation takes the form

dµ

dt
= D

[
κ
(
µ∗ − µ

)
+

1

2
Tη2x +

1

2
ρgη2

]
at x = ±l, µ(0) = 0, (4.24)

and

dη

dt
= −hΦxx. (4.25)

Here µ∗ = Ms −M∗. After introducing nondi-
mentional time t1 =

√
g/h t, equation (4.24) can

be written as

dµ

dt1
=

vd√
gh

[
hκ

g

(
µ∗ − µ

)
+
Th

2g
η2x +

1

2
ρhη2

]
at x = ±l, µ(0) = 0.

Here the coefficient vd = Dg is proportional to
the growth rate of the island. The speed of

wave propagation is known to significantly ex-
ceed the rate of nucleation and

√
gh� vd and so

we can take ε = vd/
√
gh as a small parameter.

This allows to assume that the trapped mode
which persists for all time (in the absence of fric-
tion) can significantly affect the island growth,
in which case the unknown velocity potential Φ
can be found, using only the first term in the
expansion (4.19)

Φ(x, t1) = ϕ(x, ω∗)q(t1).

Bellow nondimantional time t1 will be written
without subscript. Consider a simple example of
the external force P (t) = Pδ(t) Thus the prob-
lem (4.23)–(4.25) is reduced to

[1− εLµ]
d2q

dt2
+ ω2

∗q = 0, (4.26)

dµ

dt
= ε

[
κh

g

(
µ∗ − µ

)
+
Th

2g
η2x +

1

2
ρhη2

]
at x = ±l, (4.27)

dη

dt
= −c ϕxxq. (4.28)

Here ω2
∗ = ω2

∗h/g, c =
√
gh,

εL =
2[ϕx(l)]2

∆∗
.

where

∆∗ =
ρ

h

∫ +∞

−∞
[ϕ]2dx+m0

∫ +∞

−∞
[ϕx]2dx+

+ 2M∗[ϕx(l)]2.

The initial conditions are

q(0) = 0,
dq(0)

dt
= F,

µ(0) = 0,

where F = Ph/g. We add the small parameter
ε to equation (4.26). This, as can be shown, is
quite correct.

Then, using the multiple scale method we
take two scale of time t and τ = εt and apply
expressions of unknown functions in the small
parameter ε

q(t, τ) = q0 + εq1 + . . . ,

µ(t, τ) = µ0 + εµ1 + . . . ,
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η(t, τ) = η0 + εη1 + . . .

Let us restrict further consideration to two ap-
proximations. For the zero approximation we
get

∂2q0
∂t2

+ ω2
∗q0 = 0, q0(0) = 0,

dq0(0)

dt
= F,

∂µ0
∂t

= 0, µ0(0) = 0,

∂η0
∂t

= −cϕxxq0.

Here µ0 is independent of t and the first ap-
proximation has the form

∂2q1
∂t2

+ ω2
∗q1 = Lµ0

∂2q0
∂t2
− 2

∂2q0
∂t∂τ

,

∂q1(0)

∂t
=
∂q0(0)

∂τ
, (4.29)

∂µ1
∂t

= −∂µ0
∂τ

+ κg(µ∗ − µ)+

+
1

2
Tgη0

2
x +

1

2
ρhη20 (4.30)

at x = ±l,

∂η1
∂t

= −∂η0
∂τ
− c ϕxxq1. (4.31)

Here κg = κh/g, Tg = Th/g. Then further
application of the multiple scale method yields
that

µ0 =
(
µ∗ + β

)
β∗, (4.32)

here β∗ = 1− exp [−κgτ ],

q0(t, τ) =

=
F

ω∗
sinω∗

[
t+

L
(
µ∗ + β

)
2κg

(
β∗ + κgτ

)]
(4.33)

and

µ1 =
βκg
2ω∗

sin 2ω∗

[
t+

L(µ∗ + β)

2κg

(
β∗ + κgτ

)]
.

Here β = hc2F 2

8gκgω
4
∗

[
Tgϕ

2
xxx(l) + ρhϕ2

xx(l)
]
.

4.3. Influence of localization waves on the
island growth

The island mass M(t) then follows from
(4.22) and, after some manipulation, it is found
that

M(t) = Ms + (M∗ −Ms) exp[−εκgt]+

+ β

{
1− exp[−εκgt]+

+
εκg
2ω∗

sin 2ω∗

[
t+

L(Ms −M∗ + β)

2κg
×

×
(

1 + εκgt− exp[−εκgt]
)]}

+O(ε2).

The last expression describes the island growth
qualitatively. The first terms correspond to the
island growth caused by the static stress only.
The influence on the island growth exerted by
the trapped wave is expressed by the third term,
with the constant β as a factor.

Thus, the existence of localized wave on the
film surface leads to the increase in the rate of
island growth. When determining the size of
growing islands, this effect should be taken into
account.

5. Conclusion

A thin film with growing islands has
been modelled as the two–dimensional non–
stationary problem for a fluid layer with the
inertial free surface on which there are two
growing mass inclusions. For the corresponding
frequency–domain problem there was obtained
a trapped mode solution. It was shown that in
the time domain problem perturbation force will
excite the localized wave near the islands and in
the absence of friction the wave will persist for
all time. This creates additional stress in the
film and leads to the increase in the rate of is-
land growth.
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