УДК 541.128.3+66.048.6

# КАТАЛИТИЧЕСКОЕ ГОРЕНИЕ САЖИ В ПРИСУТСТВИИ МОЛИБДАТА ЛИТИЯ-МЕДИ, ДОПИРОВАННОГО ИОНАМИ СЕРЕБРА

Карпович Н.  $\Phi$ .  $^{1}$ , Лебухова Н. В.  $^{2}$ , Макаревич К. С.  $^{3}$ , Чигрин П.  $\Gamma$ .  $^{4}$ , Кириченко Е. А.  $^{5}$ 

CATALYTIC SOOT COMBUSTION IN PRESENCE OF MOLYBDATES  $LI_2CU_{2-X}AG_X(MOO_4)_3$ Karpovich N. F., Lebukhova N. V., Makarevich K. S., Chigrin P. G., Kirichenko E. A.

The synthesis of  $\text{Li}_2\text{Cu}_{2-x}\text{Ag}_x(\text{MoO}_4)_3$  phases  $(0 \leq x \leq 0.1)$ , which have monoclinic syngony and structural type of  $\text{Li}_2\text{Cu}_2(\text{MoO}_4)_3$ , was carried out. It was shown that molybdates  $\text{Li}_2\text{Cu}_2(\text{MoO}_4)_3$  and  $\text{Ag}_2\text{Cu}_2(\text{MoO}_4)_3$  possess by catalytic ability in soot oxidation process and can substantially reduce CO yield in combustion products. The Ag additive to  $\text{Li}_2\text{Cu}_2(\text{MoO}_4)_3$  molybdate in range  $0 \leq x \leq 0.1$  leads to soot ignition temperature reduction from 408° to 382°C (587°C at uncatalytic combustion). The obtained results are useful at development of diesel exhaust emission abatement catalysts.

Keywords: catalytic soot combustion, double molybdates, CO conversion

Разработка эффективных катализаторов очистки выхлопов дизельных двигателей от углеводородов, сажевых частиц и СО — одна из актуальных проблем защиты окружающей среды от отходов, образующихся при сжигании органического топлива. Известно, что каталитической способностью к окислению сажи обладают простые ( $CeO_2$ ,  $MoO_3$ ,  $V_2O_5$ ,  $Co_3O_4$ , Fe<sub>2</sub>O<sub>3</sub>, CuO) и бинарные оксиды (LiCrO<sub>2</sub>,  $CsV_2O_7$ ,  $Cu_3Mo_2O_9$ ) [1–5], а также оксидные композиты (AuVO $_x$ /TiO $_2$ , Cu/K/V/Cl,  $La_{0.8}K_{0.2}Cu_xMn_{1-x}O_3$ ,  $K_x/La_2O_3$ , Cu/Ce/Al/O), в которых повышенная активность может сочетаться с термоустойчивостью компонентов [6–10]. Среди них наиболее хорошо изучены и введены в употребление оксидоцериевые катализаторы, способные обеспечить снижение температуры воспламенения сажи до 380-390°C, а при нанесении меди, проявляющие активность к конверсии CO в  $CO_2$  [3, 10]. Однако температура отработавших газов в момент запуска холодного двигателя и в режиме холостого хода может изменяться от 120 до 700°C, в свя-

зи с чем поиск и разработка катализаторов, эффективных для очистки низкотемпературных дизельных выбросов приобретает важное значение. В [5,11], показано, что медномолибдатные системы обладают сопоставимой с  $CeO_2$  каталитической активностью и, кроме того, способностью к окислению CO в  $CO_2$ . В этом плане, определенный интерес, благодаря своим структурным и электронным свойствам, а также возможностью вариации элементного состава, представляют такие соединения как двойные молибдаты переходных металллов, активность которых в качестве катализаторов окисления изучена мало.

Целью настоящей работы является синтез и исследование каталитических свойств молибдатов состава  $\text{Li}_2\text{Cu}_{2-x}\text{Ag}_x(\text{MoO}_4)_3$   $(0 \leqslant x \leqslant 0, 1)$  в процессе окисления сажи.

#### 1. Экспериментальная часть

Синтез образцов  ${\rm Li_2Cu_{2-x}Ag_x(MoO_4)_3}$  (0  $\leqslant$  x  $\leqslant$  0,1), а также для срав-

 $<sup>^1{\</sup>rm Kapпович}$  Наталья Федоровна, канд. хим. наук, старший научный сотрудник Института материаловедения ХбНЦ ДВО РАН.

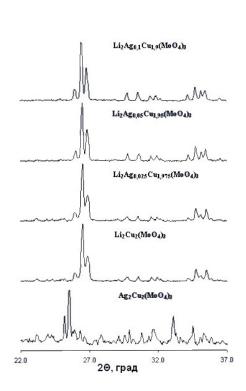
 $<sup>^2 \</sup>mbox{Лебухова Наталья Викторовна, канд. хим. наук, ведущий научный сотрудник Института материаловедения ХбНЦ ДВО РАН.$ 

 $<sup>^3</sup>$ Макаревич Константин Сергеевич, канд. техн. наук, научный сотрудник Института материаловедения Х6НЦ ДВО РАН.

<sup>&</sup>lt;sup>4</sup>Чигрин Павел Геннадьевич, аспирант Института материаловедения Х6НЦ ДВО РАН.

 $<sup>^{5}</sup>$ Кириченко Евгений Александрович, аспирант Института материаловедения ХбНЦ ДВО РАН.

нения  $Ag_2Cu_2(MoO_4)_3$  проводили растворным методом. Использовались реактивы марок х.ч. и ч.д.а. Рассчитанные количества  $Cu(NO_3)_2 \cdot 3H_2O$ ,  $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ ,  $LiOH \cdot H_2O$ ,  $AgNO_3$  растворяли в предварительно приготовленном водном растворе комплексообразователей, которые подбирались с учетом констант нестойкости органических комплексов металлов и произведений растворимости мономолибдатов соответствующих металлов. В итоге, в качестве комплексонов были использованы этилендиаминтетрауксусная кислота (1,5 моля на каждый моль суммарного содержания катионов) и триэтаноламин (1,2 моля на 1 моль молибдат-иона). После смешивания всех компонентов в полученный прозрачный раствор вводили сахарозу из расчета 4 моля на 1 моль получаемой фазы. Раствор упаривался до сиропообразного состояния, после чего подвергался термической деструкции при 250°C в течении 3 ч. до образования черной пористой массы, которую истирали и подвергали окончательному пиролизу при температуре 450°C в течении 80 ч. Такой способ синтеза позволяет добиться гомогенного смешивания компонентов в требуемых соотношениях, а также однородности микроструктуры, химического и фазового состава получаемых продуктов [12]. Для получения двойных молибдатов  $Li_2Cu_2(MoO_4)_3$  и  $Ag_2Cu_2(MoO_4)_3$  состав исходных реагентов рассчитывали на соотношение металлов Li:Cu:Mo и Ag:Cu:Mo равное 2:2:3. Синтез молибдатных систем сложного катионного состава  $Li_2Cu_{2-x}Ag_x(MoO_4)_3$ проводили с добавкой Ад, расчитанной на замещение от 2,5 до 10 ат. % ионов меди в  $Li_2Cu_2(MoO_4)_3$ .


Рентгенофазовый анализ (РФА) синтезированных образцов проводили на дифрактометре ДРОН-7, с использованием  $\mathrm{Cu}_{\mathrm{K}\alpha}$ -излучения. Средний диаметр частиц установлен с использованием лазерного анализатора Analysette 22 Comfort и для полученных порошков составлял от 2,2 до 3,8 мкм. Значения удельной поверхности всех образцов, оцененные по тепловой адсорбции азота, анализатор Sorbi 4.1, были сопоставимы и находились в пределах значений 0,96-1,21 м $^2$ /г, погрешностьв определении не превышала 4 %.

Сажу (ГОСТ 12222-78, марка В) смешивали с синтезированными катализаторами, и для сравнения с  ${\rm Al_2O_3}$ , в массовом соотношении 1:10. Каталитическое горение сажи, протекающее с образованием газообразных оксидов, исследовали методами ТГ и ДСК на приборе NETZSCH STA 449 F3.

Скорость подъема температуры составляла  $5^{\circ}$ С/мин, скорость подачи воздуха в реактор — 50 мл/мин. Температуру начала горения сажи  $(t_0)$  оценивали по ТГ кривым, температуру воспламенения сажи  $(t_{max})$  — по максимуму экзоэффекта на ДСК кривых процесса горения, температуру плавления полученных фаз — по началу эндоэффекта на ДСК кривых, точность определения  $\pm 2^{\circ}$ С. Выделяющиеся газы исследовались на содержание оксидов СО и СО2 с использованием газоанализатора Инфракар М-1, диапазон измерений СО —  $0\div 7\pm 0,42\%$ ,  $\mathrm{CO}_2-0\div 16\pm 0,96\%$ .

# 2. Результаты и обсуждение

Рентгенограммы образцов, полученных термической обработкой реакционных смесей с различным соотношением металлов при 450°C в течении 80 ч., представлены на рис. 1. На рентгенограммах отсутствуют дифракционные пики оксидов и индивидуальных молибдатов соответствующих металлов, что указывает на их однофазность. Мотив отражений на дифрактограмме образца с соотношением Ag:Cu:Mo=2:2:3 является характерным для рентгеновских спектров двойных молибдатов одно- и двухвалентных металлов, строение которых близко к структурному типу ромбического  $Li_3Fe(MoO_4)_3$ , и также относится к фазе  $Ag_2Cu_2(MoO_4)_3$  [13]. Рентгенограмма смеси с соотношением Li:Cu:Mo=2:2:3 соответствует моноклинной структуре двойного молибдата  $Li_2Cu_2(MoO_4)_3$  (ASTM: 45-143). Добавка серебра от 2,5 до 10 ат.% при синтезе фаз  $\text{Li}_2\text{Cu}_{2-x}\text{Ag}_x(\text{MoO}_4)_3$  не приводит к возникновению видимых изменений в спектре  $Li_2Cu_2(MoO_4)_3$ , что свидетельствует о сохранении моноклинной структуры двойного молибдата. При добавлении 2,5 ат. % Ад наблюдается смещение основных рефлексов фазы в область малых углов на  $\Delta 2\Theta = 0,03 \div 0,08^{\circ}$ , которое возрастает до  $\Delta 2\Theta = 0,08 \div 0,12^{\circ}$  по мере увеличения содержания Ад до 10 ат. %. Наблюдаемое изменение межплоскостных расстояний может быть результатом формирования структурных дефектов и расширения кристаллической решетки  $Li_2Cu_2(MoO_4)_3$ . Соответственно с увеличением количества Ад в составе фазы от 2,5 до 10 ат. % происходит последовательное снижение температуры плавления синтезированных молибдатных фаз от 763 до 734°С (табл. ??).



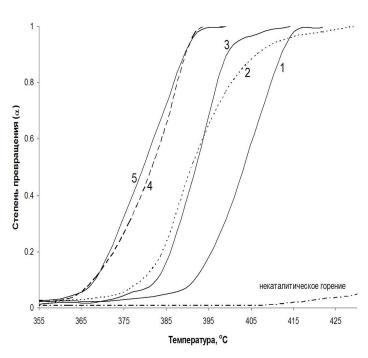



Рис. 1. Рентгенограммы образцов, полученных термообработкой при 450°C реакционных смесей с различным содержанием металлов

Рис. 2. ТГ кривые горения сажи в присутствии катализатров:  $1-\mathrm{Li_2Cu_2(MoO_4)_3}$ ;  $2-\mathrm{Ag_2Cu_2(MoO_4)_3}$ ;  $3-\mathrm{Li_2Cu_{1,975}Ag_{0,025}(MoO_4)_3}$ ;  $4-\mathrm{Li_2Cu_{1,95}Ag_{0,5}(MoO_4)_3}$ ;  $5-\mathrm{Li_2Cu_{1,9}Ag_{0,1}(MoO_4)_3}$ .

Присутствие всех полученных двойных молибдатов значительно снижает температурный интервал горения сажи, по сравнению с некаталитическим горением (рис. 2), что позволяет отнести их к весьма эффективным катализаторам дожига дизельных сажевых выхлопов. Согласно характеристикам процесса каталитического горения сажи, представленным в таблице, фаза  $Ag_2Cu_2(MoO_4)_3$  обладает большей каталитической способностью  $(t_{max} = 392^{\circ} C)$ , чем фаза  $Li_2Cu_2(MoO_4)_3$  ( $t_{max} = 406$ °C). Тем не менее, температура плавления молибдата серебра-меди —  $560^{\circ}$  C, не соответствует требованию к термической стабильности катализатора, обусловленному колебаниями температур газового потока в реальном автомобильном конвертере от 120 до 700° С [10], что снижает перспективу практического использования этой фазы. Добавки Ад к  $Li_2Cu_2(MoO_4)_3$  приводит к существенному возрастанию его каталитической способности, при незначительном изменении температуры плавления (таблица). Температура воспламенения сажи последовательно снижается до 394 и 384° C) с увеличением содержания серебра в составе двойного молибдата от 2,5

до 5 ат. %. Дальнейшее повышение концентрации Ag до 10 ат. % уже не оказывает существенного влияния на характеристики каталитического горения сажи.

Результаты анализа выделяющихся газов в процессе окисления сажи показали способность всех двойных молибдатных солей к конверсии СО в СО $_2$  (таблица).Наиболее значительно выход СО падает в присутствии соединения  $\text{Li}_2\text{Cu}_2(\text{MoO}_4)_3$ , соотношение  $\frac{\text{CO}}{\text{CO}+\text{CO}_2}$  снижается примерно в 10 раз по сравнению с горением сажи, смещенной с оксидом алюминия. Молибдаты  $\text{Ag}_2\text{Cu}_2(\text{MoO}_4)_3$  и  $\text{Li}_2\text{Cu}_{2-x}\text{Ag}_x(\text{MoO}_4)_3$  ( $0 \leqslant x \leqslant 0,1$ ), в состав которых входит серебро, обеспечивают практически одинаковый, не зависящий от содержания добавки, показатель снижения СО в продуктах горения сажи.

## Заключение

Растворным методом проведен синтез молибдатных фаз состава  ${\rm Li_2Cu_{2-x}Ag_x(MoO_4)_3}$  ( $0 \leqslant x \leqslant 0,1$ ). Согласно данным РФА, добавка Ag от 2,5 до 10 ат. % к  ${\rm Li_2Cu_2(MoO_4)_3}$  приводит к изменению параметров кристал-

| Катализатор                               | t <sub>0</sub> , °C | $t_{max}$ , °C | $\frac{\text{CO}}{\text{CO}+\text{CO}_2},\%$ | Тпл, °С |
|-------------------------------------------|---------------------|----------------|----------------------------------------------|---------|
| $\mathrm{Al_2O_3}$                        | 442                 | 588            | 11,3                                         | _       |
| $\mathrm{Ag_2Cu_2(MoO_4)_3}$              | 384                 | 392            | 1,56                                         | 560     |
| $\mathrm{Li_2Cu_2(MoO_4)_3}$              | 396                 | 406            | 1,12                                         | 761     |
| ${\rm Li_2Cu_{1,975}Ag_{0,025}(MoO_4)_3}$ | 386                 | 394            | 1,52                                         | 763     |
| ${ m Li_2Cu_{1,95}Ag_{0,05}(MoO_4)_3}$    | 373                 | 384            | 1,55                                         | 743     |
| ${\rm Li_2Cu_{1,9}Ag_{0,1}(MoO_4)_3}$     | 374                 | 382            | 1,56                                         | 734     |

Каталитические и термические свойства молибдатных фаз  $Li_2Cu_{2-x}Ag_x(MoO_4)_3$ 

лической решетки двойного молибдата без перестройки его моноклинной структуры. Сравнительное исследование каталитических свойств молибдатов в процессе окисления сажи показало, что в присутствии  ${\rm Li}_2{\rm Cu}_2({\rm MoO}_4)_3$  температура воспламенения сажи снижается от  $587^{\circ}{\rm C}$  (некаталитическое горение) до  $408^{\circ}{\rm C}$ , в присутствии  ${\rm Ag}_2{\rm Cu}_2({\rm MoO}_4)_3$ ,  ${\rm Li}_2{\rm Cu}_{1,9}{\rm Ag}_{0,1}({\rm MoO}_4)_3$  — до  $382^{\circ}{\rm C}$ . Отмечена также способность всех синтезированных молибдатных фаз значительно снижать соотношение  $\frac{{\rm CO}}{{\rm CO}+{\rm CO}_2}$  в продуктах окисления сажи.

## Jume pamy pa

- Stanmore B. R., Brilhas J. F., Gilot P. The oxidation of soot: the review of experiments, mechanism and model // Carbon, 2001. Vol. 39. P. 2247–2268.
- 2. Mul G., Neeft J. P. A., Karteijn P., Moulijn J. A. The formation of carbon suurface oxygen complexes by oxygen and ozon. The effect of transition metal oxides // Carbon, 1998. Vol. 36. No. 9. P. 1269–1276.
- 3. Machida M., Murato Y., Kishikawa K., Ikeue K. On the reasons for high activity of CeO<sub>2</sub> catalyst for soot oxidation // Chem. of mater., 2008. Vol. 20. No. 13. P. 4489–4494.
- 4. Hasan M. A., Zaki M. I., Kumari K., Pasupulety L. Soot deep oxidation by molybdena and molybdates: a thermogravimetric investigation // Thermochim. Acta, 1998. Vol. 320. P. 23–32
- 5. Pruvos C., Lamonier J. F., Courcort D., Abi-Aad E., Aboukaïs A. Effect of copper addition on the activity and selectivity of oxide catalyst in the combustion of carbon particulate // Stud. in Sur. Sci. and Cat., 2000. Vol. 130. P. 2159– 2164.

- 5. Craenenbroeck J. V., Andreeva D., Tabakova T., Werde K. V., Mullens J., Verpoort F. Spectroscopic Analysis of Au-V-based Catalysyts and Their Activity in the Catalytic Removal of Diesel Soot Particulates // J. of Cat., 2002. Vol. 209. P. 515–527.
- 7. Peng X., Lin H., Shangguan W., Huang Z. Physicochemical and catalytic properties of  $La_{0.8}K_{0.2}Cu_xMn_{1-x}O_3$  for simultaneous removal of  $NO_x$  and soot: effect of Cu substitution Amount and calcination temperature // Ind. Eng. Chem. Res., 2006. Vol. 45. No. 26. P. 8822–8828.
- 8. Ciambeli P., Palma V., Russo P., Vaccaro S. Redox properties of a TiO<sub>2</sub> supported Cu-V-K-Cl catalysts in low temperature soot oxidation // J. of Mol. Cat. A: Chemical, 2003. Vol. 204–205. P. 673–681.
- 9. Milt V. G., Querini C. A., Miró E. E. Thermal analysis of  $K(x)/La_2O_3$ , active calalysts for the abatement for diesel exhaust contaminants // Thermochim. Acta, 2003. Vol. 404. P. 177–186.
- 10. *Бокова М. Н.* Горение сажи в присутствии Cu-Ce-Al-O катализатров. Роль озона как активирующего агента. Дис. . . . канд. хим. наук. М., 2004. 143 с.
- 11. Лебухова Н.В., Карпович Н.Ф., Макаревич К.С., Чигрин П.Г. Каталитическое горение сажи в присутствии медно-молибдатных систем, полученных разными методами // Катализ в промышленности, 2008. № 6. С. 35—42.
- 12. Sen A., Pramarnik P. Low-temperature synthesis of nano-sized metal molybdate powders // Mater. Letters, 2001. Vol. 50. P. 287–294.
- 13. Цыренова  $\Gamma$ . Д., Солодовников С. Ф., Павлова Э. Т., Хайкина Е.  $\Gamma$ ., Солодовникова З. А. Фазообразование в системе  $Ag_2MoO_4$ – $CuO-MoO_3$  и кристаллическая структура нового двойного молибдата  $Ag_2Cu_2(MoO_4)_3$  // Журнал неорг. химии, 2009. Т. 54. № 5. С. 802–809.

Ключевые слова: каталитическое горение сажи, двойные молибдаты, конверсия СО