УДК 550.834.05

ПРОГНОЗ ГЕОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК В ГЕОЛОГИЧЕСКОМ РАЗРЕЗЕ Курочкин А. Г.¹, Борисенко Ю. Д.², Калайдина Г. В.³

PREDICTION OF GEODYNAMICS CHARACTERISTICS IN THE GEOLOGICAL CROSS-SECTION

Kurochkin A. G., Borisenko Yu. D., Kalaidina G. V.

The paper is devoted to the questions of the prediction evaluation of the geological cross-section, its petrophysical and geodinamics characteristics based on the problem solution for the inversion of seismic information of 2D–3D observations into the medium parameters within an elastic model.

Keywords: prediction evaluation, geological cross-section, seismic trace, geodynamics characteristics, inverse problem, elastic model

Прогноз геологического разреза и выделение зон развития коллекторов с оценкой их углеводородонасыщения является актуальной задачей, которая сопряжена с необходимостью определения не только петрофизических, но и геодинамических характеристик разреза, оценки напряженного состояния разреза, выявления областей аномального проявления характеристик разреза.

Решение задач обращения [1–6] сейсмической информации в параметры среды в рамках упругой модели позволяет не только получить информацию о параметрических свойствах модели, но и обеспечить оценку геодинамических свойств разреза, содержащихся в кинематических и динамических характеристиках сейсмической записи 2D–3D наблюдений методом общей глубинной точки (МОГТ).

1. Решение задач обращения

Обращение сейсмической информации в параметры модели среды (решение задач инверсии) всегда представляло большой интерес, примером этого является преобразование сейсмических трасс временного разреза в разрез псевдоакустических импедансов (ПАК), на основе которого осуществляется переход к оценке емкостных и фильтрационных свойств коллекторов на базе выявляемых регрессионных уравнений.

В последние годы для решения подобных задач все чаще используются стохастические алгоритмы [6], реализующие схемы перебора с вероятностным правилом перехода, получившие название «направленных» методов Монте-Карло. При этом уровень решения задач инверсии определяется базой входных данных и алгоритмами решения.

В рамках акустического приближения (ПАК и др.) рассматриваются модели, не учитывающие обмена на границах.

Переход к упругой модели — это учет обмена на границах и, следовательно, расширенное представление модели через параметры продольных и поперечных волн. Для подобного перехода и соответственно реализации упругой инверсии, учитывающей фактор обмена на границах, необходимо в качестве входных данных использовать информацию исходных многоканальных сейсмограмм [1,4,6]. Практическое решение задач инверсии различного уровня реализовано в технологии «Петросейс» [5], обеспечивающей изучение геологического разреза с выделением и оценкой продуктивно насыщенных объектов через упругие параметры мо-

¹Курочкин Александр Григорьевич, канд. геол.-мин. наук, доцент кафедры геофизических методов поисков и разведки Кубанского государственного университета; email: AlexG_K@mail.ru

²Борисенко Юрий Дмитриевич, канд. физ.-мат. наук, доцент кафедры геофизических методов поисков и разведки Кубанского государственного университета; email: ub48@mail.ru

³Калайдина Галина Вениаминовна, канд. физ.-мат. наук, преподаватель кафедры прикладной математики Кубанского государственного университета; email: gkalaidina@yandex.ru

дели среды, получаемые из сейсмической информации 2D–3D наблюдений МОГТ. При этом извлекаются различные моно параметры: скорость продольных (V_p) и поперечных волн (V_s) , объемная плотность (ρ) , акустическая жесткость $(I_p = V_p \rho \text{ и } I_s = V_s \rho)$ и упруго-деформационные характеристики: модули всестороннего сжатия (K), сдвига (μ) и другие, а также комплексные параметры: коэффициенты гамма $(\gamma = V_s/V_p)$ и Пуассона (ν) .

В основной части технология использует решение задачи инверсии многоканальных сейсмограмм отраженных продольных волн в параметры модели среды посредством применения «направленных» методов Монте-Карло.

Технология базируется на обработке данных сейсмических наблюдений, в основе которой используется $\tau - p$ преобразование сейсмической информации с пластовой аппроксимацией модели среды, а также кепстральные преобразования для оценки сейсмического сигнала и характера его поглощения в различных интервалах разреза [1,5].

Данная технология обеспечивает не только качественные, но главным образом, количественные оценки петрофизических свойств разреза за счет определения моно- и комплексных параметров, отражающих литологию, пористость, характер флюидонасыщения и другие характеристики. На этой основе осуществляется оценка изменения свойств разреза, выделение коллекторов и зон нефтегазонасыщения.

Решение задач инверсии реализуется через определение упруго-деформационных параметров. Переход от традиционных монопараметров — V_p и V_s к упруго-деформационным модулям всестороннего сжатия (К) и сдвига (μ) и комплексным параметрам — коэффициентам гамма (γ) и Пуассона (ν) определен оптимизацией параметризации модели.

Основным индикационным параметром с позиции определения свойств разреза и его нефтегазонасыщения является коэффициент Пуассона ν — безразмерный параметр, диапазон которого строго фиксирован ($-1 \leq \nu \leq 0, 5$) и обеспечивает достаточно удобную кластерную форму представления в зависимости от литотипов и характера флюидонасыщения.

Для реализации технологии «Петросейс» используются исходные сейсмические записи, несущие информацию о кинематических и динамических свойствах сейсмической записи.

На рис. 1 представлен пример получаемой информации для каждой точки изучаемого пространства в виде совокупности графиков различных параметров упругой модели среды скорости продольных и поперечных волн (V_p и V_s); модулей всестороннего сжатия и сдвига (К и μ); комплексных параметров коэффициентов (γ и ν).

Эта информация служит для построения профильных и объемных представлений различных параметров и пересчетных форм баз данных на основе регрессионных уравнений типа фильтрационно-емкостных (ФЕС).

2. Геодинамические определения

Полученная на базе инверсионных решений информация позволяет перейти к рассмотрению геодинамических представлений о модели изучаемого объекта. Характер напряженного состояния, распределение давлений в разрезе играют определяющую роль в флюидодинамических процессах. Поэтому получение прогнозной информации о распределении давлений по разрезу является важным также для моделирования горнотехнологических процессов.

При допущении о том, что напряженное состояние массива горных пород определяется только действием гравитационных сил, вполне оправданом для определенных условий платформенных областей, каждый элементарный объем пласта под действием вертикального напряжения будет испытывать деформации сжатия в вертикальном и растяжения в горизонтальном направлениях. Деформациям растяжения в горизонтальном направлении препятствует реакция окружающих пород, в результате чего возникают горизонтальные напряжения.

Напряженное состояние в заданной точке однозначно определяется симметричным тензором напряжений, диагональные компоненты которого представляют собой нормальные напряжения, а недиагональные касательные напряжения. Среднее нормальных напряжений

$$\sigma = \frac{1}{3}(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}), \qquad (2.1)$$

не зависящее от выбора координат, определяет напряжение скелета пористой среды. Определим его составляющие σ .

Вертикальное напряжение σ_{zz} (геостатическое давление P_o) определяется, как пра-

Рис. 1. Результат инверси
и $\tau-p$ сейсмограммы в параметры модели среды

вило, весом вышележащих пород

$$\sigma_{zz} = \int_{0}^{z} \rho(z)gdz$$

где ρ — объемная плотность породы; g — ускорение силы тяжести; z — мощность пород над исследуемым пластом.

Запишем скорости продольных и поперечных волн через постоянные Ламе (λ и μ — постоянные Ламе)

$$V_p = \sqrt{\frac{\lambda + 2\mu}{\rho}}, \quad V_s = \sqrt{\frac{\mu}{\rho}}.$$

Отношение V_s/V_p определяет комплексный параметр $\gamma = \frac{V_s}{V_p}$ и соответственно коэффициент Пуассона

$$\nu = \frac{1 - 2 \left(V_s / V_p \right)^2}{2 \left[1 - \left(V_s / V_p \right)^2 \right]}$$

Для изотропной идеально-упругой модели среды можно записать, что

$$\sigma_{xx} = \frac{\lambda}{\lambda + 2\mu} P_o,$$
$$\sigma_{yy} = \frac{\lambda}{\lambda + 2\mu} P_o.$$

Исходя из отношения

$$\frac{V_s}{V_p} = \gamma^2 = \frac{\mu}{\lambda + 2\mu},$$

выражение $\frac{\lambda}{\lambda+2\mu}$ можно привести к виду

$$\frac{\lambda}{\lambda + 2\mu} = \frac{\nu}{1 - \nu}$$

и составляющие σ_{xx}, σ_{yy} примут вид

$$\sigma_{xx} = \sigma_{yy} = \frac{\nu}{1-\nu} P_o, \qquad (2.2)$$

где $\frac{\nu}{1-\nu}$ будет определять коэффициент бокового напряжения и, следовательно, поперечного сжатия. При этом в случае водной толщи ($\nu = 0, 5$) $\sigma_{zz} = \sigma_{xx} = \sigma_{yy} = P_o$.

Для случаев горных пород, когда $\nu < 0.5$, боковое напряжение уменьшается относительно вертикального в зависимости от величины ν . Следовательно, напряжение в вертикальном направлении будет больше, чем в горизонтальном. Учитывая различия в распределении ν для различных пород, можно говорить о том, что характер горизонтальных напряжений и, следовательно, деформаций для различных литотипов будет меняться. Это в равной степени относится и к изменению характера флюидонасыщения. Переход от водонасыщенного состояния к нефтегазонасыщенному представлению приводит к уменьшению бокового напряжения.

Подставляя в уравнение (2.1) выражения (2.2), получим

$$\sigma = \frac{P_o}{3} \frac{(1+\nu)}{(1-\nu)}.$$

Очевидно, что при переходе от одного слоя к другому, при котором изменяются значения ν , обусловленные литотипом, пористостью или характером флюидонасыщения, возникает разрыв напряжения в скелете, определяемый соотношением значений ν для соседних слоев.

Тогда скачок напряжения на границе раздела двух слоев будет определяться выражением

$$\Delta \sigma = \frac{2}{3} P_o \left[\frac{\nu_1 - \nu_2}{(1 - \nu_1)(1 - \nu_2)} \right]$$

На рис. 2 приведены соответствующие графики распределения давлений и напряжений различного характера, полученные на основе использования вышеприведенных формул и исходной информации полученной на базе решения задачи инверсии (рис. 1). При определении гидростатического давления P_{hyd} использовался принятый гидростатический градиент давления $G \simeq 1,018 \cdot 10^4$ Па/м (0,45 psi/ft).

На данном рисунке отражены следующие характеристики: P_0 — геостатическое давление; B_{oo} — геостатическое давление; P_{hyd} — гидростатическое давление; P_{oe} — эффективное геостатическое давление; σ — напряжение в скелете; $\Delta \sigma$ — скачки напряжения в скелете; σ_{xx} — горизонтальное напряжение.

3. Прогноз поровых давлений и гидравлического давления разрыва пласта

Давление флюида в порах пород неколлекторов многие исследователи называют поровым. Как отмечено В. М. Добрыниным и др. [7], это явление изучено значительно меньше, чем пластовые давления в коллекторах, ведь поровые давления не поддаются

Рис. 2. Определение распределений различных характеристик давлений и напряжений по результатам инверсии

Рис. 3. Определение поровых давлений и гидравлических давлений разрыва пласта

прямым измерениям. Сведения о них косвенные, полученные в основном путем изучения физических свойств глинистых пластов геофизическими методами, по шламу или в результате наблюдений за буримостью пород. В то же время именно градиенты давления поровых вод в породах не коллекторах влияют на характер изменения пластового давления в большинстве осадочных бассейнов. Поэтому поровые давления, а также гидродинамическое давление разрыва пласта введены в перечень прогнозных параметров, дополняющих вышеперечисленные. При этом для определения поровых давлений используется уравнение [8]

$$P_p = P_o - (P_o - P_{hud}) \times (V_p / V_n)^3,$$

где P_p — предсказанное поровое давление (глины); P_{hyd} — гидростатическое давление; V_p — интервальная скорость продольных волн; V_n — скорость нормально уплотненной глины.

Интервальные скорости определяются на базе инверсионного решения (рис. 1), что обеспечивает снижение погрешности определяемой пересчетом эффективных скоростей в интервальные при использовании формулы Урупова–Дикса.

Для определения гидравлического давления разрыва пласта используется уравнение [8]

$$P_{frac} = P_p + (P_o - P_p) \times \frac{\nu_z}{1 - \nu_z}$$

где P_{frac} — прогнозное гидравлическое давление разрыва пласта; ν_z — коэффициент Пуассона нормально уплотненной глины как функция глубины, получаемый по результатам решения задачи инверсии для интервала глинистых отложений.

На рис. 3 приведены результаты расчета поровых давлений и гидравлических давлений разрыва пласта для исходной информации, использованной для получения параметрического анализа представленного на рис. 1 и 2. Рассмотренные выше элементы отражают единую структуру прогнозной оценки геологического разреза и его флюидонасыщения на базе технологии «Петросейс».

Литература

- Курочкин А. Г., Борисенко Ю. Д., Калайдина Г. В. Обращение τ − р сейсмограмм по методу «имитации кристаллизации» // Наука Кубани. Серия «Проблемы физикоматематического моделирования». Естественные и технические науки. 1998. №1. С. 71–76.
- Курочкин А. Г., Борисенко Ю. Д., Газарян В. П., Калайдина Г. В. Изучение геологического строения объекта и прогноз петрофизических характеристик разреза // Наука Кубани. Серия «Проблемы физико-математического моделирования». Естественные и технические науки. 1998. № 2. С. 41–46.
- Курочкин А. Г., Борисенко Ю. Д., Газарян В. П., Калайдина Г. В. Развитие теории и практики AVO-анализа // Материалы юбилейной конференции «Теория и практика морских геолого-геофизических исследований». Геленджик. 1999. С. 47–49.
- Курочкин А. Г., Борисенко Ю. Д., Калайдина Г. В. Развитие алгоритмов инверсии τ – р сейсмограмм в параметры модели среды // Наука Кубани. Серия «Проблемы физико-математического моделирования». Естественные и технические науки. 2002. № 1. С. 73–78.
- Курочкин А. Г., Борисенко Ю. Д., Калайдина Г. В. Технология «Петросейс» — теория и практика использования // Геофизика. Спец. вып. «Технологии сейсморазведки І». 2002. С. 121–125.
- Курочкин А. Г., Борисенко Ю. Д., Калайдина Г. В. Инверсия сейсмической информации в параметры модели среды // Геофизика. Спец. вып. «Технологии сейсморазведки II». 2003. С. 44–47.
- Добрынин В. М., Кузнецов О. Л. Петрофизическое моделирование природных гидродинамических процессов в осадочных бассейнах // Геофизика. 2002. № 3. С. 59–69.
- Snijder J., Dickson D. 3D pore pressure prediction in the Columbus Basin, offshore Trinidad & Tobago // First break. 2002. Vol. 20. No. 5. P. 283–286.

Ключевые слова: прогнозная оценка, геологический разрез, сейсмическая трасса, геодинамические характеристики, обратная задача, упругая модель

Статья поступила 21 марта 2011 г.

Кубанский государственный университет, г. Краснодар

⁽С) Курочкин А. Г., Борисенко Ю. Д., Калайдина Г. В, 2011