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Abstract. For isotopic gibbous body deformed in a linear way differential and integral meth-
ods of factorization are applied. The algorithm of their usage is shown in details. It consists in
submersion of boundary-value problem into topological area with topology induced by spheres
of Euclidean space. The studying of the boundary-value problem is conducted in the space
of slowly growing generalized functions. With application of means of external analysis the
boundary-value problem is lead to the system of functional equations with matrix coefficient.
The differential factorization that demanded building factorizing matrix-functions and auto-
morphism allow obtaining pseudodifferential equation. For this purpose the Leray residue form
is calculated. The integral equations meeting specific boundary conditions are extracted from
it. The method is demonstrated by the example of boundary-value problem for the sphere,
from which it is easy to see, that analytical notion of solution allows to reveal localizations and
resonant parameter point simply enough.

Keywords: block element, factorization, spherical ball, integral and differential factorization
methods, exterior forms, boundary problems.

Introduction

Let us assume that domain Ω occupied by
an isotropic linearly deformable body in con-
vex and its boundary ∂Ω is smooth. In the case
of nonconvex boundaries, there are two ways
to solve the boundary-value problem: either to
pass on the generalized factorization or to sub-
divide the domain into block structures and
investigate boundary-value problems in partial
convex domains by means of simple factoriza-
tion [1,2]. Note that the latter procedure implies
that rectangular Cartesian coordinated are in-
troduced at the tangent bundle of the boundary

∂Ω which is also used below. Consider the ho-
mogeneous differential Lamé equations in the
conventional forms [1, 4]

(λ+ µ) graddiv u + µ∆u− δu = 0,

u = {u1, u2, u3} .
(1)

Here, δ = −ρω2 in vibration problems and
δ = ρp2 in nonstationary problems, where ω is a
vibration frequency, p is the Laplace transform
parameter, and ρ is the density of the material.
In the boundary-value problem, certain bound-
ary conditions to be set, which will be discussed
below.

Отдельные фрагменты работы выполнены при поддержке грантов РФФИ (12-01-00330), (12-01-00332),
(13-01-96502), (13-01-96505), (13-01-96508), (13-01-96509), (14-08-00404), (13-01-12003)-м, гранта Президента
РФ НШ-1245.2014.1, программ отделения ЭММПУ и Президиума РАН, выполняемых Южным научным
центром РАН.

Бабешко Владимир Андреевич, академик РАН, д-р физ.-мат. наук, зав. кафедрой математического
моделирования Кубанского государственного университета, директор Научно-исследовательского
центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского
государственного университета, заведующий лабораторией Южного федерального университета; e-mail:
babeshko41@mail.ru.

Евдокимова Ольга Владимировна, д-р физ.-мат. наук, главный научный сотрудник Южного научного
центра РАН; e-mail: evdokimova.olga@mail.ru.

Бабешко Ольга Мефодьевна, д-р физ.-мат. наук, главный научный сотрудник Научно-исследователь-
ского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского
государственного университета; e-mail: babeshko49@mail.ru.

Горшкова Елена Михайловна, канд. физ.-мат. наук, старший научный сотрудник Научно-исследователь-
ского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского
государственного университета; e-mail: gem@kubsu.ru.

Гладской Игорь Борисович, канд. физ.-мат. наук, старший научный сотрудник Научно-
исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф
Кубанского государственного университета; e-mail: i.glad@list.ru.

Грищенко Дмитрий Вадимович, аспирант кафедры математического моделирования Кубанского
государственного университета; e-mail: icmm@fpm.kubsu.ru.

Телятников Илья Сергеевич, аспирант кафедры математического моделирования Кубанского
государственного университета; e-mail: ilux_t@list.ru.



14 Babeshko V.A., Evdokimova O.V., Babeshko O.M., Gorshkova E.M., Gladskoi I. B., . . .

1. The block element method

1. After applying a three-dimensional
Fourier transform with operator F3 =
= F3(α1, α2, α3) [1–4] over all the coordinates
x1, x2, and x2; substituting the −iαk param-
eters of the Fourtier transform for the corre-
sponding derivatives; and multiplying by −1,
the above system of equations takes the follow-
ing form:

KU =

∫
∂

∫
Ω

ω, U = {U1, U2, U3} ,

U = F3(α1, α2, α3)u,

(1.1)

K =

∥∥∥∥∥∥
k11 k12 k13

k21 k22 k23

k31 k32 k33

∥∥∥∥∥∥ ,
k11 = (λ+ 2µ)α2

1 + µα2
2 + µα2

3 + δ,

k12 = k21 = (λ+ µ)α1α2,

k13 = k31 = (λ+ µ)α1α3,

k22 = µα2
1 + (λ+ 2µ)α2

2 + µα2
3 + δ,

k23 = k32 = (λ+ µ)α2α3,

k33 = µα2
1 + µα2

2 + (λ+ 2µ)α2
3 + δ.

Let us consider a tangent of the boundary ∂Ω
and introduce a local rectangular Cartesian co-
ordinate system xν such that the xν1 , xν2 axes
lie in the tangent plane and the xν3 axis as
aligned with the outward normal to boundary.
The Fourtier transport parameters correspond-
ing to them are denoted as αν . Formulas for
the passage from one local system to another
are given by the well-known transformation re-
lationships:

xν = cτνxτ + xτ0 , αν = cτνα
τ . (1.2)

Where xτ
0 are the coordinates of the origin of

the new coordinate system in the initial one.
Using similar expressions, let us pass to new

unknown quantities denied the following formu-
las:

uν = cτνuτ . (1.3)

Lemma. On the passage to the new local
coordinate system, the images and preimages
of the Fourtier transforms in Eqs. (1) are trans-
formed according to formulas(1.2) and (1.3).

The Lemma is proved by direct substitution
of the transform into (1), after which differen-
tial equations (1) should be written in each local
coordinate system xν with uν = {uν1 , uν2 , uν3}.

2. In functional equations (1.1), the vector
of exterior forms ω has the following compo-
nents [1–4]:

ωsk = Rskdx1Λdx2 +Qskdx1Λdx3+

+ Pskdx2Λdx3, (1.4)

ω = {ωs1, ωs2, ωs3} ,
where subscript s indicates the group of exte-
rior forms and k is the number of the row of the
Lame equations. Transformation of the compo-
nents R3 = {R31, R32, R33} of the obtained vec-
tor of the exterior form yields the following rep-
resentation:

R31 = [σ13 − iµα3u1 − iλα1u3] ei〈αx〉,

R32 = [σ23 − iµα3u2 − iλα2u3] ei〈αx〉, (1.5)

R33 =
[
σ33 − i (λ+ 2µ)α3u3−

− iµ (α1u1 + α2u2)
]
ei〈αx〉.

Taking into account that an element of the tan-
gent bundle is described by the oriented area
dx1Λdx2, we conclude that unknown quantities
at the boundary can be set in terms of various
combinations, using either stresses, or displace-
ment, or mixed conditions.

Thus, for an isotropic body, the functional
equations of the boundary-value problem under
consideration in one of the local coordinate sys-
tems can be presented in the following form:

K(αν)Uν =

∫∫
∂Ω

ων =

=
∑
τ

∫∫
∂Ω

ετω
ν(ξτ ,αν). (1.6)

where ετ is the partition of unity
3. For application of the differential factor-

ization method to construction of the pseudod-
ifferential equations for a matrix function, we
use the approach developed in (1.5). As a re-
sult, the factorizing matrix functions take the
following form:

Q1 =

∥∥∥∥∥∥
1

α3−α31−
−α1

α2(α3−α31−) 0

0 1 0
0 0 1

∥∥∥∥∥∥ ,
Q2 =

∥∥∥∥∥∥
1

α3−α31−
0 −α2

α31−(α3−α31−)

0 1 0
0 0 1

∥∥∥∥∥∥ ,
Q3 =

∥∥∥∥∥∥
1 0 0
0 1 0
α1

α32−(α3−α32−)
α2

α32−(α3−α32−)
1

α3−α32−

∥∥∥∥∥∥ .
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Here, the double rots root of the determinant
det K are expressed as

α31+ = i

√
α2

2 + α2
1 +

δ

µ
, α31− = −α31+. (1.7)

Where the signs at the subscrips indicate that
the roots belong to the upper (plus) or lower
(minus) half-planes of the complex plane.

The dimple roots are expressed as

α32+ = i

√
α2

2 + α2
1 +

δ

λ+ 2µ
, α32− = −α32+.

In order to obtain the required pseudodifferen-
tial equations, it is necessary to equate the cor-
responding Leray residue forms to zero. Calcu-
lating these residue forms in the neighborhood
of the local coordinate system, we obtain the
following relationships:

lim
α3→α31−

(α3 − α31−)QmF2R3 = 0,

m = 1, 2,

lim
α3→α32−

(α3 − α32−)QmF2R3 = 0,

m = 3.

(1.8)

Where F2 = F2(α1, α2) is the two-dimensional
Fourtier transform (with respect to the param-
eters x1, x2) of functions defined in the same
neighborhood of the local coordinate systems.

In the matrix form, system (1.8) can be pre-
sented as

LF2u = DF2t, t = {t1, t2, t3} ,
t1 = σ13, t2 = σ23, t3 = σ33,

(1.9)

L =

∥∥∥∥∥∥
l11 l12 l13

l21 −l22 0
l31 −l32 −l33

∥∥∥∥∥∥ ,
l11 = α1

√
τ2

1 − υ2,

l22 =
1

2
l33 = −α1

√
τ2

2 − υ2,

l12 = α2

√
τ2

1 − υ2, l21 = α2

√
τ2

2 − υ2,

l13 = s, l31 = 2s+ α2
2, l32 = −α1α2,

D =
i

µ

∥∥∥∥∥∥∥
α1
2

α2
2

√
τ21−υ2

2
α2 −α1 0√
τ2

2 − υ2 0 −α1

∥∥∥∥∥∥∥ ,
τ1 = − δ

λ+ 2µ
, τ2 = − δ

µ
,

υ =
√
α2

1 + α2
2, s = 0.5τ2

2 − υ2.

Calculation of the determinant of matrix L
yields

detL = 2α1

√
τ2

2 − υ2×

×
[
υ2
√
τ2

1 − υ2

√
τ2

2 − υ2 + s2

]
= ∆2,

α310 = −iσ1 =
√
τ2

1 − υ2,

α320 = −iσ2 =
√
τ2

2 − υ2,

Imα3n0 6 0, n = 1, 2.

Multiplying system (1.9) by the matrix-function
L−1 on the left and applying the two-
dimensional inverse Fourier transform, we get
the following representation:

F−1
2 K0F2t = u, (1.10)

K0 = − 1

2µ

∥∥∥∥∥∥
k11 k12 k13

k21 k22 k23

k31 k32 k33

∥∥∥∥∥∥ ,
k11 = α2

1M + α2
2N, k22 = α2

1N + α2
2M,

k12 = k21 = α1α2(M −N), k33 = R,

k13 = −k31 = iα1P, k23 = −k32 = iα2P,

M(υ) =
−0.5τ2

2σ2

υ2∆0
, N(υ) =

2

υ2σ2
,

P (υ) =
υ2 − 0.5τ2

2 − σ1σ2

∆0
R(υ) =

−0.5τ2
2σ1

∆0
,

∆0 = (υ2 − 0.5τ2
2 )2 − υ2σ1σ2.

Using similar formulas, one can calculate the
Leray reside forms in the right-hand side of
functional equations (1.6) for remaining τ after
the change of variables ατ = cντα

ν .
An analysis of expression (1.10) shows that

the obtained formulas coincide with those for
the case where the body id half-space. How-
ever, it should be borne in mind that there is
significant distinction consisting in the fact that
functions u, t are defined in the neighborhood of
the local coordinate systems generated by the
tangents bundle of the boundary. Taking into
account that the unity partition leads to cover-
age of the boundary by disjoint neighborhood,
we conclude that the set of given and unknown
functions for the system of pseudodifferential
equations under consideration will contain func-
tions defined in the neighborhoods of the local
coordinate systems.
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4. For further investigation, let us write the
system of pseudodifferential equations (1.10)
constructed after calculating the Leray residue
forms as follows:∫∫
∂Ων

ων0 (ξν , αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))+

+
∑
τ

′
∫∫
∂Ωτ

ωτ0 (ξτ , αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2)) = 0,

ν = 1, 2, . . . , T.

Here ων0 , ωτ0 are no longer the exterior forms;
these quantities are given by expressions ob-
tained after multiplying equations by the factor-
izing matrix functions and calculating the Leray
residue forms. This system of equations can be
rewritten in the following form:

Lν(αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))×

×Uν
0(αν1 , α

ν
2 , α

ν
3r−(αν1 , α

ν
2))−

−Dν(αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))×

×Tν(αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))+

+
T∑
τ=1

′[Lτ (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))×

×Uτ
0(αν1 , α

ν
2 , α

ν
3r−(αν1 , α

ν
2))−

−Dτ (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))×

×Tτ (αν1 , α
ν
2 , α

ν
3r−(αν1 , α

ν
2))
]

= 0. (1.11)

Where the primed sum symbol implies that the
term with τ = ν in this sum is missing. The ob-
tained pseudodifferential equations make it pos-
sible to formulate various boundary-value prob-
lems for elastic bodies. For example, let us as-
sume that the displacement vector uν is set at
the boundary. Then, the system of equations
can be rewritten as follows:

(Lν)−1DνTν +
∑
τ

(Lν)−1DτTτ =

= Uν
0 +

∑
τ

(Lν)−1LτUτ
0 . (1.12)

We obtained the system of integral equations
with respect to stresses, which can be written
in a more explicit form by introducing, foe ex-
ample, the following notation:

Kν(αν1 , α
ν
2) = (Lν)−1Dν ,

Kντ (αν1 , α
ν
2) = (Lν)−1Dτ ,

Bντ (αν1 , α
ν
2) = (Lν)−1Lτ .

As a result, applying the inverse Fourtier trans-
form F−1

2 (xν1 , x
ν
2) with respect to parameters

αν1 , αν2 , we arrive at the following system of in-
tegral equations:∫∫
∂Ων

kν(xν1 − ξν1 , xν2 − ξν2 )tν(ξν1 , ξ
ν
2 )dξν1dξ

ν
2 +

+

T∑
τ=1

′
∫∫
∂Ωτ

kντ (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )tτ (ξτ1 , ξ

τ
2 )dξτ1dξ

τ
2 =

= uν(xν1 , x
ν
2)+

+
T∑
τ=1

′
∫∫
∂Ωτ

bντ (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 )uτ (ξτ1 , ξ

τ
2 )dξτ1 ξ

τ
2 ,

(1.13)

xν1 , x
ν
2 ∈ ∂Ων , 1 6 ν 6 T,

kν(xν1 , x
ν
2) = F−1

2 Kν(αν1 , α
ν
2),

kντ (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 ) =

= F−1
2 Kντ (αν1 , α

ν
2) exp i〈cνταν , ξτ 〉,

bντ (xν1 , ξ
τ
1 , x

ν
2 , ξ

τ
2 ) =

= F−1
2 Bντ (αν1 , α

ν
2) exp i〈cνταν , ξτ 〉.

where T is the number of local coordinate sys-
tems for the tangent bundle of the boundary.
Similarly, one can derive the system of integral
equations for a boundary-value problem with
present stresses. The following theorem is valid.

Theorem. The operator Kν(αν1 , α
ν
2) in sys-

tem (1.13) is principal, corresponding to the
boundary-value problem for half-space; the re-
maining operators are subordinate, being com-
pletely continuous in spaces where yhe principal
operator is invertible.

This theorem determines plenty of methods
for the analytical and numerical investigation
into system of integral equations of the type
under consideration.

2. The ball body

We construct block elements with a spher-
ical boundary by the differential factorization
method. Contrary to the approaches described
in [9–12], where simple factorization related to
the representation of the group of translational
motions of space was carried out, we applied
generalized factorization [5] in this case. This
approach is dictated by using the representa-
tion of the group of rotations of space induced
by the sphere automorphism as a manifold with
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an edge. As in [9–12], we construct the func-
tional and pseudo-differential equations for de-
scribing the block element as well as the rep-
resentation of the solution for the boundary-
value problem. Below, without repeating the
general case [13], we presented the block ele-
ments for the ball and the space with the cutout
ball and the Helmholtz equations derived for the
boundary-value problems. The case under con-
sideration is convenient because it makes pos-
sible to demonstrate the use of the method for
problems solvable by other approaches. When
using the method, we open distinctive features
of the simple and generalized factorizations the
application of the methods in an unlimited re-
gion, and the feature of satisfying the boundary
conditions. The choice of the equation for the
boundary-value problem is related also to the
fact that the solutions of precisely this equation
are the components of solutions of a number of
boundary-value problems of a deformable-solid
dynamic.

For an illustration, as an example, we
constructed here the block elements for the
boundary-value problem in the spherical region
Ω1 of radius b and in the space with the cutout
spherical region Ω2 of the radius a with the
boundaries ∂Ωs, s = 1, 2, for the Helmholtz dif-
ferential equation in the form of

Q(∂x1, ∂x2, ∂x3)ϕ =

=
[
∂2x1 + ∂2x2 + ∂2x3 + k2

]
×

× ψ(x1, x2, x3) = 0. (2.1)

It is shown below that the pseudo-differential
equations for the block element enable us to
consider all possible variants of boundary con-
ditions θ, ϕ, r for the partial differential equa-
tion. For this purpose, we considered both the
Dirichlet and Neumann boundary conditions as
in the previous problems.

In the spherical system of coordinates θ, ϕ,
r, Eq. (1) for the ball has the form

(∆ + k2
1)ψ = 0,

∆ =
1

r2
· ∂
∂r

(
r2 ∂

∂r

)
+

+
1

r2
· 1

sin θ
· ∂
∂θ

(
sin θ

∂

∂θ

)
+

+
1

r2 sin2 θ
· ∂

2

∂ϕ2
, (2.2)

r, θ, ϕ ∈ Ω1.

A similar equation for the half-space with a cav-
ity is taken in the form of

(∆ + k2
2)w = 0, r, θ, ϕ ∈ Ω2. (2.3)

The solutions of the boundary-value problems
for Eqs. (2.2), (2.3) are found in the spaces
of slowly increasing generalized functions HS .
For investigating this equation by the differ-
ential factorization method, we introduce the
Fourier-Bessel transform and reversion in spher-
ical functions of the form of

B2(l,m) =

=

π∫
0

2π∫
0

g(θ, ϕ)Y m−
l (θ, ϕ) sin θdθdϕ = G(l,m),

B−1
2 (θ, ϕ)G =

=
∞∑
l=0

l∑
m=−l

G(l,m)Y m+
l (θ, ϕ) = g(θ, ϕ),

B3(λ, l,m)g =

=

∞∫
0

π∫
0

2π∫
0

g(r, θ, ϕ)Jl+ 1
2
(λr)Y m−

l (θ, ϕ)×

× sin θdθdϕrdr = G(λ, l,m), (2.4)

B−1
3 (r, θ, ϕ)G =

=

∞∑
l=0

l∑
m=−l

∞∫
0

G(λ, l,m)Jl+ 1
2
(λr)×

× Y m+
l (θ, ϕ)λdλ = g(r, θ, ϕ).

Here Jν(λr) is the Bessel function, and
Y m
l (θ, ψ) is the spherical function,

Y m±
l (θ, ϕ) =

=
1

2

√
2l + 1

π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)e±imϕ.

Applying transforms (2.3) to Eq. (2.2), we con-
struct the external form [14,15], which becomes
(P , Q, R – some functions)

ω = Pb2 sin θdθ ∧ dϕ+

+Qbdr ∧ dθ +Rb sin θdϕ ∧ dr. (2.5)

We carry out the transition to the functional
equation. It can be represented in the form [14,
15]

K(λ)Ψ(l,m, λ) =

∫
∂Ω

ω, K(λ) = λ2 − k2
1.
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In the case of a ball, we have

(λ2 − k2)Ψ(l,m, λ) = Llm(λ),

Llm(λ) = b2ψ′lm(b)Tlm(λ, b)−
− b2ψlm(b)T ′lm(λ, b), (2.6)

ψlm(r) = B2(l,m)ψ(r, θ, ϕ),

Tlm(λ, r) =
1√
r
Jl+ 1

2
(λr).

For providing the automorphism and obtaining
the pseudo-differential equation, we construct
the representation of the boundary-value prob-
lem solution as

ψ(r, θ, ϕ) = B−1
3 (r, θ, ϕ)

Llm(λ)

(λ2 − k2
1)
. (2.7)

The automorphism requirement consists in ful-
filling the equality [14,15]

ψ(r, θ, ϕ) = 0, r > b. (2.8)

As a result of simple transformations for the
simple problem under consideration, we obtain
a pseudo-differential equation degenerated into
an algebraic one in the form of

Llm(k1) = 0. (2.9)

In complex spatial problems, this equation is
pseudo-differential literally.

By the example of this problem, it is already
possible to observe the difference of the general-
ized factorization from the simple one: although
the characteristic equation K(λ) has two roots,
Eq. (2.9) should be fulfilled only for one. A sim-
ilar problem considered by simple factorization
in a layer would require fulfilling Eq. (2.9) for
both roots.

Using pseudo-differential Eq. (2.9), we con-
sider the formulation of the boundary-value
problems for Eq. (2.2). In the case of setting
the Dirichlet conditions for the boundary ∂Ω
for example, in the form of

ψ(b, θ, ϕ) = ψ0(b, θ, ϕ). (2.10)

The solution of pseudo-differential Eq. (2.9) is
obtained in the form of

ψ′lm(b) =
ψlm0(b)T ′lm(k1, b)

Tlm(k1, b)
.

Here we accept the designation

ψlm0(b) = B2(l,m)ψ0(b, θ, ϕ).

In the complex spatial problems, we obtain the
integral or integro-differential equation instead
of the algebraic one. For example, we applied
the integral factorization method [16,17] for its
solution.

Introducing this relation into Eq. (2.7) and
carrying out the necessary calculations, we ob-
tain that, for r → b, there takes place

ψ(r, θ, ϕ)→ ψ0(b, θ, ϕ). (2.11)

By using precisely the same algorithm, we
solved the problem with the Neumann bound-
ary condition. In this case, instead of boundary
condition (2.10), the condition for the derivative
is set on the boundary; i.e.,

ψ′(b, θ, ϕ) = ψ1(b, θ, ϕ).

The solution of the pseudo-differential equation
has the form of

ψlm(b) =
ψ′lm1(b)Tlm(k1, b)

T ′lm(k1, b)
.

Here

ψlm1(b) = B2(l,m)ψ1(b, θ, ϕ).

Introducing this relation into Eq. (2.7) and car-
rying out the transformations, we again obtain
the fulfillment of boundary conditions as in the
Dirichlet problem; i.e.,

ψ′(r, θ, ϕ)→ ψ1(b, θ, ϕ), r → b, (2.12)

but for the classical component of the solution.

Conclusions

We particularly note that found solution
(2.1) of the boundary-value problem in the
space of slowly increasing generalized functions
HS consists of the classical component and the
generalized functions. If the initial boundary-
value problems are formulated for sufficiently
smooth boundary conditions, for example, pro-
viding that the solutions belong to the Sobolev’s
spaces, the classical component coincides with
this solution. The generalized component ap-
pears only as a result of the differentiation on
the normal to the boundary ∂Ω of the step-
function carrier. This circumstance is explained
in detail in [1–4] and also in our subsequent
studies.

Relation (2.12) is obtained with taking into
account the remark made.

Thus, the pseudo-differential equation in-
volves all possible variants of formulation of the
boundary conditions of the problem.
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