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Abstract. The work is devoted to studying the problem of creating directional antennas in block
structures, blocks of which are heterogeneous interacting bodies.

Previously, the authors have conducted a similar study for the case of multi-layer medium on
an elastic half-space. The area of the study was a half-space in which the antenna direction was
formed. Contact between the layers and a half-space made it possible for the vibration influence
directed from the surface reach half-space. The problem is much more complicated in the case
of an arbitrary block structure. Here it is necessary to solve the problem of contact interaction
of blocks that require a specification of regions occupied by blocks and the nature of the contact
between them. The study is based on earlier results obtained by the method of block element,
and the most recent results based on topological methods for solving boundary value problems.
Further research related to the question of localization of the stress-strain state in a separate
block, which is also broad enough task, but which has already been performed separately.

Keywords: block element, factorization, topology, integral and differential factorization meth-
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Introduction

In this study, the differential factorization
method, which has been applied in [1, 2] to an
individual convex isotropic elastic body, is ex-
tended to the case of block structures, in par-
ticular, layered structures. As was noted in [3],
this circumstance opens up the possibility to in-
vestigate boundary-value problems for differen-
tial equations with variable coefficients, as well
as nonlinear boundary-value problems.

The formulas derived in [1, 2] for an indi-
vidual convex elastic body represented an ap-

proximate solution describing its stress-strained
state. This approximate solution becomes more
accurate as the shape of the body approaches
a half-space. The approximate equation thus
constructed can be refined also by inverting the
systems of integral equations presented in the
cited works. Similar results can be obtained for
block structures [4] but, as is shown below, the
large number of blocks and the variety of pos-
sible combinations lead to much more complex
relationships.
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The differential factorization method de-
scribed in [1, 2] as applied to an individual
domain is extended herein to a collection of
neighbouring domains, which are referred to as
block structures. As applied to boundary value
problems for such collections of domains, this
method has specificity features that distinguish
it from traditional approaches. For example,
boundary conditions in the differential factor-
ization method cannot be satisfied in the tra-
ditional form by introducing the limiting val-
ues of solutions and their derivatives on the
boundary. The cause id that the derivatives of
the solution constructed by the method on the
boundary have mot only classical components
but also components in the form of generalizes
functions, namely, �-delta functions and their
derivatives [1, 2]. Their origin is explained in
detail in [1,2], and they are not an obstruction
to solving boundary value problems. In this
paper, we show how to overcome these difficul-
ties when the differential factorization method
is applied to block structures.

1. The block element method

By block structures, we mean materials oc-
cupying bounded, semibounded, or unbounded
domains, which are called contacting blocks. It
is assumed that each block in a block struc-
ture has its own specific behavioral in response
to physical fields of a various nature. It is
also assumed that these fields are described by
boundary value problems for systems of cou-
pled partial differential equations with constant
coefficients. Media of this type are typical
of the earth’s crust , structural materials un-
der complex physical-mechanical conditions [4],
nonmaterials, crystal structures of various ar-
rangements, and electronics materials. A sim-
ilar structure is also posses by various materi-
als, including those created by combining only
nanoscale components or macro- and nanoscale
components.

We consider structures with three-dimen-
sional blocks. The absence of considerable con-
straints on boundary value problems describing
the properties of individual blocks suggests that
these block structures can have a wide variety of
properties. In the general case, the concept of a
block requires that the boundary of the domain
a boundary value problem, including multiply
connected domains, be unchanged and piece-
wise smooth. Each block can be bounded or
unbounded and can involve coupled processes

related to solid and fluid mechanics and elec-
tromagnetic, diffusion, thermal, acoustic, and
other processes. Block structures are more gen-
eral objects than piecewise homogeneous struc-
tures, in which the physical parameters of the
medium are assumed to change in jumps in the
transition from one block to another with the
preservation of the medium material. The last
property means that certain coefficients in the
differential equations of a boundary value prob-
lem undergo jump variations in the transition
from one block to another with the type of the
boundary value problem being preserved.

Block structures have a wider range of prop-
erties than piecewise homogenous structures.
This follows from the variety of blocks’ prop-
erties, their shapes, and the character of in-
terblock interactions and also results from the
interaction of physical fields, some of which are
produced or transformed by blocks. A special
case of block structures is layered structures.
Such structures with plane boundaries for lin-
ear boundary value problems can be viewed as
fairly thoroughly investigated. Block structures
are studied primarily by numerical methods, for
which unbounded domains always present dif-
ficulties. The differential factorization method,
which is a generalization of the integral trans-
form method, gives answers to questions con-
cerning the properties of physical fields in each
block even at the stage of solving boundary
value problems.

Note that integral transforms in a bound-
ary value problem for partial differential equa-
tions in a domain ⌦ are a convenient research
tool when the differential equations, ⌦, and
the functions describing an integral transform
are consistent. By consistency, we mean the
possibility of transforming partial differential
equations into ordinary ones by applying an in-
tegral transform and the setting of boundary
conditions on the boundary described by con-
stant geometric parameter values. This prop-
erty holds if the integral-transform functions
are the eigenfunctions of the differential op-
erator in ⌦. In terms of topological algebra,
this property holds if the transformation groups
generated by an automorphism of the mani-
fold ⌦ have representations that are invariant
under a differentiable mapping of the vector
field defined on this manifold. For several sim-
ple domains, which are referred to as classi-
cal, these are the Fourier transform in domains
with plane boundaries, the Bessel transform in
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domains with circular boundaries, the Bessel-
Legendre transform in domains with spherical
boundaries, which are applied, for example, to
the Helmholtz, Schrodinger, Lame, and Navier-
Strokes equations with constant coefficients.

It was shown that these and other integral
transforms are consequences of self-mappings of
manifolds generating transformation groups of
space and their motions. Representations of
these groups are obtained by introducing the
special functions mentioned above. In the case
of classical domains, boundary value problems
are relatively easy to solve. Specifically, after
applying an integral transform, they are re-
duced to simple functional or ordinary differ-
ential equations and then integral inversion is
used.

For boundary value problems in domains of
complex geometry, we use the differential fac-
torization method, which reduce them to func-
tional equations with dimension reduction.

We formulate the following boundary value
problem for a block structure. Assume that
the block-structure domain ⌦ consists of sub-
domains ⌦

b

, b = 1, 2, . . . , B with boundaries
@⌦

b

It may happen that a portion of the
block’s boundary is shared with another block,
in which case it is a contact boundary. The
remaining non-contact portion can be free or
subject to external forces. It is assumed that a
boundary value problem for systems of partial
differential equations with (their own) constant
coefficients is set in each domain ⌦

b

.
For each block, the boundary value problem

for the system of P partial differential equations
in the three-dimensional block domain ⌦ can be
written as
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s = 1, 2, . . . , s
b0 < P, x 2 @⌦

b

\ @⌦
d

,

M1 < M, N1 < N, K1 < K,

b, d = 1, 2, . . . , B.

The boundary value problem is studied in
the spaces of tempered distributions described
in [1].

In the general form, the above boundary
conditions describe the contact of blocks with
the relevant components of physical fields co-
inciding on the common boundaries as dedi-
cated by the corresponding physical laws. In
particular, conditions (1.2) can be significantly
simpler. For example, they can lack boundary
external forces and express only the equality
between the solutions and their derivatives on
a common boundary. However, as mentioned
above, the derivatives of solutions written in in-
tegral form cannot be equated, since their com-
ponents in the factorization method are gener-
alized functions [2]. On noncontact boundaries,
we set the boundary conditions of the boundary
value problem considered in [1]. The scheme for
applying the differential factorization method
to such domains can be described as follows.

Following the differential factorization
method [1], the boundary value problem is
reduced to a system of functional equations
with each domain ⌦

b

considered separately. As
a result, we obtain the system of functional
equations.

K
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b = 1, 2, . . . , B.
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Here, we used the notation adopted in [1] with
additional indices b. For example, !

b

is the
vector of exterior forms of the boundary value
problem in ⌦

b

.
Comparing this case with that considered

in [1], we note that boundary conditions (1.2)
generally contain the values of the solutions and
their derivatives on the boundary at least in
two neighboring domains. This is a substan-
tial difference of block structures from objects
analyzed in [1].

According to the differential factorization
method, the next step consists of factoriz-
ing the matrix function K

b

(↵) given by (1.3).
For this purpose, we choose a matrix function
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can be represented in integral the form
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Here, �+ is a closed contour such that the do-
main �+ contains only the zeros zv

s+, zv
s� and,

while the domain�� contains only the zeros ⇠⌫
n

.
The closed contour �� encloses a domain con-
taining all the zeros zv

s+, zv
s�, and ⇠⌫

n

. Rep-
resentation (1.4) implies that the elements of
K�1

b

(↵⌫

3 ,�) are rational functions with their
only singularities being zv

s+, zv
s� . The term

K�1
b

(↵⌫

3) containing them is given explicitly.
In the case of noncontact boundaries, the

boundary conditions in the differential factor-
ization method are set according to the rules
described in [1].

The boundary conditions are fulfilled ac-
cording to the following scheme. First bound-
ary conditions on the noncontact boundary of
each block are taken to the corresponding vec-
tors of exterior forms in functional equations
(1.3). For contact blocks, matching conditions
(1.2) hold on the common boundaries of neigh-
boring blocks. Depending on the properties of
the described fields, these conditions can in-
clude some relations for the solutions and their
derivatives. In the simplest case, this is the
equality of the solutions and their derivatives
on the common boundary in the transition from
one block to another. These relations are taken
to the corresponding vectors of exterior forms
of functional equations (1.3), which are prelimi-
nary solved for the unknown normal derivatives
on the boundary. The last procedure ensures
the fulfillment of contact boundary conditions
(1.2) in the solution to pseudodifferential equa-
tions, which can be proved following the scheme
described in [2].

Assume that the blocks are convex. Omit-
ting the intermediate transformations, which
can be found in [1], we find that the solution
in each block is represented as
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To illustrate this solution, we evaluate the in-
tegral with respect to ↵⌫

3 by applying Leray’s
residue form theory to obtain
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If a block degenerates into a half-space or a lay-
ered medium, the pseudodifferential equations
appearing in the course of solving the boundary
value problem degenerate into algebraic equa-
tions. The latter are inversed, and the solution
is constructed in a finite form [1].

If the block under study is not a convex
body, the boundary value problem is analyzed
by the generalized factorization method.

2. The block structure

Let us assume that a domain ⌦ of a block
structure consists of contracting convex do-
mains ⌦

b

, b = 1, 2, . . . , B with boundaries @⌦
b

.
It may happen that a portion f the bound-
ary @⌦

bd

of a certain b block coincides with the
boundary of another d block d = 1, 2, . . . , B.
Such a portion is called contracting. The re-
maining portions of the boundaries of both do-
mains are noncontracting and will be denoted
below by subscripts with one letter: @⌦

b

, @⌦
d

.
These boundaries can be free of or subjected
to external actions. It is assumed that, in each
domain ⌦

b

one of the boundary-value problems
considered in [1,2] is formulated in terms of the

systems of differential equations with partial
derivatives, the constant coefficients of which
are different in each domain.

For each block b = 1, 2, . . . , B characterized
by its own mechanical characteristics, the equa-
tions of the isotropic elasticity theory can be
written in the following form [1,2]:
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where the notation is the same as in the pa-
pers cited. On the noncontracting portions of
the boundary, traditional boundary conditions
of the elasticity theory are set [1, 2]. In the
contracting parts, in particular, on @⌦

bd

, the
conditions of equality of the stress vectors are
formulated as follows:

u
b

= u
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Using the differential factorization method [1,
2], we reduce the boundary-value problem to
the system of functional equations, considering
each domain ⌦

b

individually. As a result, we
obtain the following system of functional equa-
tions:
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where the notation is the same as in [1,2] with
the addition of subscripts b. In particular, !

b

is the vector of external forms of the boundary-
value problem in domain ⌦

b

.
Comparing this case with those considered

in [1, 2], it should be noted that boundary
conditions (1.2) generally contain stresses and
displacements on the boundary from at least
two neighboring domains. In this respect, the
block structures significantly differ from the in-
dividual bodies studied in [1, 2]. According to
the algorithm of the differential factorization
method, the boundary conditions for noncon-
tracting boundaries are applied according to
the rules stipulated in [3].

Without repeating the application of algo-
rithms described in [1, 2], we will present here
the final form of pseudodifferential equations
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for the case of contact between two bodies. Ful-
fillment of the boundary conditions is ensured
as follows. First, the boundary conditions on
the noncontracting boundary for each individ-
ual block are introduced in the corresponding
vectors of exterior forms of functional equations
(2.3). When blocks are in contact, matching
conditions (2.2) on the coinciding boundaries
of the neighboring blocks @⌦

bd

are valid. These
relationships should be introduced in the corre-
sponding vector of exterior forms only of one of
the functional equations, whereas the vector of
exterior forms of the second equation remains
unchanged. As was proved in [4], this proce-
dure ensures fulfillment for the boundary con-
ditions (2.2) and does not require separation of
the generalized functions from classical compo-
nents appearing in a natural way in solutions
obtained using the factorization method.

Having omitted the procedure of apply-
ing the differential factorization method to the
boundary-value problem under consideration,
including its realization in each domain ⌦

b

and
on ⌦

d

as was performed in [1,2], we present the
pseudodifferential equations for a block struc-
ture consisting of two blocks:
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Here, c = b in the case of domain ⌦

b

and c = d
in the case of domain ⌦

d

.

Applying the methods described in [2] and
retaining the notation used in that study, these
pseudodifferential equations can be reduced to
systems of integral equations. The system of
integral equations for domain ⌦

b

, written with
respect to vector tt⌫

b

, t⌫
d

for the displacement
vectors u⌫

b

, u⌫

d

set on noncontracting bound-

aries, has the following form:
ZZ

@⌦
b⌫

k⌫

b

(x⌫1 � ⇠⌫1 , x
⌫

2 � ⇠⌫2 )t
⌫

b

(⇠⌫1 , ⇠
⌫

2 )d⇠
⌫

1d⇠
⌫

2+

+

T

X

⌧=1

0
ZZ

@⌦
b⌧

k⌫⌧

b

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )t
⌧

b

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1d⇠
⌧

2 =

= u⌫

b

(x⌫1 , x
⌫

2)+

+

T

X

⌧=1

0
ZZ

@⌦
b⌧

b⌫⌧

b

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )u
⌧

b

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1 ⇠
⌧

2 ,

(2.5)

x⌫1 , x
⌫

2 2 @⌦
b⌫ ; 1 6 ⌫ 6 T.

For the domain ⌦

d

contacting with the domain
⌦

b

along the boundary @⌦
bd

, the system of in-
tegral equations with allowance for boundary
conditions (1.2) takes the following form:

ZZ

@⌦
p⌫

k⌫

d

(x⌫1 � ⇠⌫1 , x
⌫

2 � ⇠⌫2 )t
⌫

c

(⇠⌫1 , ⇠
⌫

2 )d⇠
⌫

1d⇠
⌫

2+

+

T

1

X

⌧=1

0

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )t
⌧

d

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1d⇠
⌧

2+

+

T

2

X

⌧=1

0

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )t
⌧

b

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1d⇠
⌧

2 =

= u⌫

c

(x⌫1 , x
⌫

2)+

+

T

1

X

⌧=1

0

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )u
⌧

d

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1 ⇠
⌧

2

+

T

2

X

⌧=1

0

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )u
⌧

b(⇠
⌧

1, ⇠
⌧

2)d⇠
⌧

1⇠
⌧

2, (2.6)

x⌫1 , x
⌫

2 2 @⌦
d⌫ ; 1 6 ⌫ 6 T = T1 + T2;

x⌫1 , x
⌫

2 2 @⌦
d⌫ ; 1 6 ⌫ 6 T = T1 + T2.

Here, c = d, p = d, if x⌫1 , x⌫2 2 @⌦
b⌫ ; and c = b,

p = bd, if x⌫1 , x⌫2 2 @⌦
bd⌫ , T1 and T2 are the

numbers of unity partition of the noncontract-
ing portion of the boundary @⌦

b⌫and the con-
tracting portion @⌦

bd⌫ , respectively; and the
primed sum symbols imply that the terms with
⌫ = ⌧ in these sums are missing if they are
present in the same sum symbol. The kernels
of the integral equations are as follows (in the
notation from [2]):

K⌫

c

(↵⌫

1 ,↵
⌫

2) = (M⌫

c

)

�1D⌫

c

,
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K⌫⌧
(↵⌫

1 ,↵
⌫

2) = (M⌫

c

)

�1D⌧

c

,

B⌫⌧

c

(↵⌫

1 ,↵
⌫

2) = (M⌫

c

)

�1M⌧

c

.

k⌫

c

(x⌫1 , x
⌫

2) = F�1
2 K⌫

c

(↵⌫

1 ,↵
⌫

2);

k⌫⌧

c

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 ) =

F�1
2 K⌫⌧

c

(↵⌫

1 ,↵
⌫

2) exp ihc⌫⌧↵⌫ , ⇠⌧ i

b⌫⌧

c

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 ) =

F�1
2 B⌫⌧

c

(↵⌫

1 ,↵
⌫

2) exp ihc⌫⌧↵⌫ , ⇠⌧ i; (2.7)

t⌫
c

(x⌫1 , x
⌫

2) = F�1
2 T⌫

c

(↵⌫

1 ,↵
⌫

2);

u⌫

c

(x⌫1 , x
⌫

2) = F�1
2 U⌫

c

(↵⌫

1 ,↵
⌫

2).

The formulas take place for c = b and c = d.
If the stress vectors t⌫

b

, t⌫
d

are given on the
boundary, the corresponding system of equa-
tions with respect to the displacement vectors
u⌫

b

, u⌫

d

takes the following form:

ZZ

@⌦
b⌫

n⌫

b

(x⌫1 � ⇠⌫1 , x
⌫

2 � ⇠⌫2 )u
⌫

b

(⇠⌫1 , ⇠
⌫

2 )d⇠
⌫

1d⇠
⌫

2+

+

T

X

⌧=1

0
ZZ

@⌦
b⌧

n⌫⌧

b

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )u
⌧

b

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1d⇠
⌧

2 =

= t⌫
b

(x⌫1 , x
⌫

2)+

+

T

X

⌧=1

0
ZZ

@⌦
b⌧

r⌫⌧
b

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )t
⌧

b

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1 ⇠
⌧

2 ,

(2.8)

x⌫1 , x
⌫

2 2 @⌦
b⌫ ; 1 6 ⌫ 6 T.

ZZ

@⌦
p⌫

n⌫

d

(x⌫1 � ⇠⌫1 , x
⌫

2 � ⇠⌫2 )u
⌫

c

(⇠⌫1 , ⇠
⌫

2 )d⇠
⌫

1d⇠
⌫

2+

+

T

1

X

⌧=1

0
ZZ

@⌦
d⌧

n⌫⌧

d

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )u
⌧

d

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1d⇠
⌧

2+

+

T

2

X

⌧=1

0
ZZ

@⌦
bd⌧

n⌫⌧

d

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )u
⌧

b

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1d⇠
⌧

2 =

= t⌫
c

(x⌫1 , x
⌫

2)+

+

T

1

X

⌧=1

0
ZZ

@⌦
d⌧

r⌫⌧
d

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 )t
⌧

d

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1 ⇠
⌧

2+

+

T

2

X

⌧=1

0
ZZ

@⌦
bd⌧
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d

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 ) t
⌧

b

(⇠⌧1 , ⇠
⌧

2 )d⇠
⌧

1 ⇠
⌧

2 ,

(2.9)

x⌫1 , x
⌫

2 2 @⌦
d⌫ ; 1 6 ⌫ 6 T = T1 + T2

where c = d, p = d, for x⌫1 , x⌫2 2 @⌦
b⌫ ;c = b,

p = bd, for x⌫1 , x⌫2 2 @⌦
bd⌫

N⌫
(↵⌫

1 ,↵
⌫

2) = (D⌫
)

�1M⌫ ,
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(↵⌫

1 ,↵
⌫

2) = (D⌫
)

�1M⌧ ,

R⌫⌧
(↵⌫

1 ,↵
⌫

2) = (D⌫
)

�1D⌧ ,

N⌫
(↵⌫

1 ,↵
⌫

2) = (D⌫
)

�1M⌫ ,

N⌫⌧
(↵⌫

1 ,↵
⌫

2) = (D⌫
)

�1M⌧ ,

R⌫⌧
(↵⌫

1 ,↵
⌫

2) = (D⌫
)

�1D⌧ ,

n⌫

c

(x⌫1 , x
⌫

2) = F�1
2 N⌫

c

(↵⌫

1 ,↵
⌫

2);

n⌫⌧

c

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 ) =

F�1
2 N⌫⌧

c

(↵⌫

1 ,↵
⌫

2) exp ihc⌫⌧↵⌫ , ⇠⌧ i;

r⌫⌧
c

(x⌫1 , ⇠
⌧

1 , x
⌫

2 , ⇠
⌧

2 ) =

F�1
2 R⌫⌧

c

(↵⌫

1 ,↵
⌫

2) exp ihc⌫⌧↵⌫ , ⇠⌧ i;

1 6 ⌫ 6 T, c = b, d.

An analysis of these formulas shows that the
first integral operators on the left are inverted
by the integral factorization method presented
in [3, 5, 6] and are principal (as in [1, 2]).

Note that, using the above-described
derivation of integral equations (2.5), (2.6), and
(2.7), (2.8) for a structure consisting of two
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blocks, it is not difficult to obtain integral equa-
tions for a structure containing an arbitrary
number of blocks. Moreover, the system of inte-
gral equations for a block structure where do-
mains occupied by blocks are not necessarily
convex has a similar form. However, in this
case, the principal operators do not need to
have kernels dependent on the difference of ar-
guments. In the case of a block structure, as
well as in the case of a single body, it is possible
to construct an approximate solution discard-
ing small terms. Then, the integral equations
can be written as follows:
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@⌦
b⌫

k⌫

b

(x⌫1 � ⇠⌫1 , x
⌫
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2) (2.10)

x⌫1 , x
⌫

2 2 @⌦
b⌫ ; 1 6 ⌫ 6 T,
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⌫
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⌫
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⌫

2 =

= u⌫

c
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⌫

2)
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⌫

2 2 @⌦
d⌫ ; 1 6 ⌫ 6 T ;

ZZ

@⌦
b⌫

n⌫

b

(x⌫1 � ⇠⌫1 , x
⌫

2 � ⇠⌫2 )u
⌫

b
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⌫

2 )d⇠
⌫

1d⇠
⌫

2 =

= t⌫
b

(x⌫1 , x
⌫

2), (2.11)

x⌫1 , x
⌫

2 2 @⌦
b⌫ ; 1 6 ⌫ 6 T

ZZ

@⌦
p⌫

n⌫

d

(x⌫1 � ⇠⌫1 , x
⌫

2 � ⇠⌫2 )u
⌫

c

(⇠⌫1 , ⇠
⌫

2 )d⇠
⌫

1d⇠
⌫

2 =

= t⌫
c

(x⌫1 , x
⌫

2),

x⌫1 , x
⌫

2 2 @⌦
d⌫ ; 1 6 ⌫ 6 T ;

where c = d, p = d for x⌫1 , x⌫2 2 @⌦
b⌫ ; and x⌫1 ,

x⌫2 2 @⌦
b⌫ ; c = b, p = bd for x⌫1 , x⌫2 2 @⌦

bd⌫ .
The modern topological method of solving

this problem is presented in [7].

Conclusion

Inverting the integral equations and substi-
tuting their accurate or approximate solutions
in the integral representations of the solutions
to the boundary problems, we have

u⌫

c

= F�1
3 (K

c

(↵⌫

1 ,↵
⌫
2 ,↵

⌫
3 ))

�1
ZZ

@⌦
c

!⌫

c

,

c = b, d.

Further, one can use the methods described
in [1, 2], which make it possible to analyze or
calculate two-dimensional integrals.
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