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Abstract. Properties of detected earthquakes which are called starting earthquakes are researched
in this work. Questions concerning methods of their detection and their expected behavior, place,
time and intensity are discussed. Some characteristic features of real earthquakes are collated
with features of model-earthquakes. It is also emphasized that there is no information on this
type of earthquakes in scientific literature on hand. Due to the specific nature of the problem, i.e.
existence of ruptural and unbounded components in the solution, detection of such earthquakes
isn’t effective while directly using even competent computing facilities on the solution of a complex
of boundary problems in environments with brittle properties. In order to research the earthquakes
the application of high-performance computing facilities is suggested when the research is put into
topological spaces with a wider range of properties than that of functional spaces.
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Introduction

In the work is represented obviously for the

first time the model of one type of earthquakes

beginning from the preparation to the accom-

plishment of the event. The model based fully

on the laws of physics and mechanics may reveal

the new type of faulting earthquake called the

starting one, as it precedes to strong crustal

earthquakes, connected with the lithosphere

plates’ interaction. As lithospheric plates we

take the Kirchhoff plates on elastic half-space

moving to each other till they approach. The

earthquake is defined by drastic increase of stress

concentration in a specified area in comparison

with a normal condition. The mining allows

evaluating with the aid of specific equipment

the location, time and intensity of this type of

earthquakes. The patterns of this earthquake

are revealed. The theory of this earthquake is

based on the mathematic methods of the high

level such as the topology, external analysis, fac-

torization, block element methods. This theory

of this earthquake is presented in this paper.

1. Rectangular block elements

The theory of block structures developed at

Kuban’ State University and the Southern Scien-

tific Center of the Russian Academy of Sciences

in [1–4] has a series of advantages discussed

below. It allows one to construct the represen-

tations of solutions of edge problems for sets of

differential equations in partial derivatives in

arbitrary regions in analytical form [1–4]. This

theory is based on the differential factorization

method. For a long time, this method was not

noted by scientists developing factorization ap-

proaches. A possible cause is that it required

modern mathematical methods, particularly, ex-

ternal analysis, the theory of functions of many

complex variables, Leray residue forms, factor-

ization of matrix-functions of several complex

variables, and the theory of representation of

groups. This method is based on fine proper-

ties of topological algebra associated with the

automorphism of topological varieties, a field

of mathematics not often used in applications.

In parallel with the differential factorization
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method, the integral factorization method ap-

pears [4]. Both methods follow each other in the

investigation and solution of both the edge prob-

lems and integral equations and their sets [4, 5].

1. The theory of block structures allowed

scientists to construct a new method for the in-

vestigation and solution of edge problems, which

does not repeat previous ones. According to its

origin, this method can be called the block el-

ement method. It is somewhat similar to the

finite element method developed in outstanding

works [6,7], etc. It is noteworthy that a large set

of computer programs has been developed on

the basis of the finite element method. Among

them, for example, ANSYS Mechanical, Multi-

physics, Structural, CivilFEM, and AUTODIN

should be mentioned. These programs allow one

to calculate the solutions of different edge prob-

lems of mechanics, physics, ecology, biophysics,

engineering applications, and other fields.

However, the finite element method has sub-

stantial disadvantages mentioned by its creators

themselves [6]. Among the main ones, the

replacement of a continuous medium by a fi-

nite number of elements of lower dimensionality

should be mentioned. As a result, the local

description of the solutions of edge problems

has only an approximated character. In the

finite element method, the carrier should be

bounded. The regions of specifying the edge

problems also should be bounded. The carriers

of the finite element, as a rule, are taken in the

two-dimensional case in the form of a triangle or

rectangle, including a curvilinear one, and in the

three-dimensional case, they are taken in the

form of a pyramid, parallelepiped, and possibly

curvilinear shape. The functions of the form

specified for such a carrier are the polynomials

of two or three variables, respectively, which

contain several unknown coefficients; i.e., they

are splines. The orders of polynomials entering

them are dictated by the order of derivatives

in differential equations of edge problems. In

this case, an important role is played by ver-

texes, edges, and faces of carriers thus intro-

duced, on which the selected points (nodes) are

allocated. They are taken in the forms of sets

in the vertexes of the pyramid or triangle, as

well as on the edges or faces. The shape func-

tions [6,7], i.e., the polynomials, are constructed

from the requirement of unique determination of

coefficients by their values in the carrier nodes.

However, several disadvantages of this method

should be noted. The polynomials of the spline

describe the solution of the edge problem in

the carrier region only approximately. This

presence of the shape functions of a finite el-

ement in the polynomial form does not allow

one to analyze the wave components of the so-

lution, especially in edge problems for media

with numerous effects on the medium by differ-

ent physical fields. In addition, if the solution

contains strongly oscillating functions, the poly-

nomial shape function cannot represent them

correctly. These problems become topical in

connection with frequently encountered compo-

sitions of microsized and nanosized materials.

An increase in the order of derivatives in differ-

ential equations complicates the construction of

finite elements and their shape functions [6] A

decrease in the sizes of splines of finite elements

worsens the convergence of the computational

processes [8]. However, a great advantage of the

finite element method is the banding or almost

diagonality of the “rigidity” matrix appearing

in this method, which substantially facilitates

the computational process. Numerous computa-

tional programs mentioned above, undoubtedly,

put the finite element method into a number of

very effective modern computational means.

The block element is free of the main dis-

advantage of the finite element – it preserves

the medium continuity, which manifests itself

exactly satisfying the corresponding differential

equations of edge problems [1–4].

Similarly to the finite element, the block

element has a carrier, out of which it equals

zero. However, its carrier can be any region,

namely, bounded, semi-bounded or unbounded,

with the boundaries passing into infinity. The

carriers of the block element can be both convex

regions in the case of exponential factorization

and multiply connected regions in the case of the

generalized factorization [9]. The block elements

are constructed by a definite algorithm of the

same type for the sets of differential equations

in partial derivatives of any finite order. They

have representation in the form of the integral

over the boundary of the carrier region [1–4].

Differential equations of the corresponding edge

problems can have arbitrary order of derivatives,

and they are not associated with the presence

of functionals – energy integrals – in them. The

application of the finite element method for such

edge problems is very complicated.

2. The block element method does not re-

peat another important computational method,

specifically, the boundary element method [10–
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12]. The latter implies the construction of the

fundamental solution of differential equations,

which carries the singular and other features on

the boundary of the region of the edge problem

under consideration [10–12]. The amount and

properties of the features rise, and the order of

derivatives increases. The difference between

these two methods also consists in satisfying

the boundary conditions; it is functional in the

boundary element method and topological but

leading to the same result in the block element

method. In addition, factorization in the block

element method remains in the representation

the only required components, while the ob-

tained pseudodifferential equations are not only

regularized rather simply but are even investi-

gated analytically and admit different variants of

approximated solutions [1–4]. In the boundary

element methods, it is necessary to solve inte-

gral equations with complex, including singular,

features, in the case of high-order derivatives

in differential equations. The block element

method, which is generated by the block struc-

ture introduced by a network dividing the region

of the solution of the edge problems into the

blocks, similarly to the finite element method,

leads to the almost diagonal set of pseudodif-

ferential equations. We can also separate other

advantages of this method; but as the main one,

we can call its investigatory possibilities, which

allow one to analyze the solutions of edge prob-

lems not restoring to concrete calculations. The

method allows one to extend the solution over

the whole region under study.

Note that the block element method, simi-

larly to other methods, has some disadvantages.

The main disadvantage is that the block element

as a function belongs to the space of gradually

rising generalized functions H
s

[1–4]. However,

this disadvantage can easily be overcome via

ignoring the generalized function, whose origin

is associated with differentiation of the step

function at the boundary of the carrier of the

block element. The classical component of the

solution continues with the conservation of the

required smoothness from block to block.

3. As an example of construction of the

block element, let us consider the following two-

dimensional edge problem in the restricted re-

gion ⌦ with a smooth boundary @⌦ for the

differential equation of the form

⇥

A11(x1, x2)@
2x1 +A22(x1, x2)@

2x2

+A(x1, x2)
⇤

'(x1, x2) = 0 (1.1)

with certain boundary conditions, for example,

Dirichlet or Neumann. Here, the coefficients

A
kk

(x1, x2), A(x1, x2) are positive smooth func-

tions.

Let us introduce in the region ⌦ a rectangu-

lar network so dense that in the zone of inter-

est of this region, the coefficients A
kk

(x1, x2),
A(x1, x2) can be assumed constant and denote

them A
kk

, A, while the region of the selected

rectangle of the network is ⌦0 with the bound-

ary @⌦0. Let it be described by the relations

|x1| 6 a and |x2| 6 b in the initial coordinate

system.

In the region ⌦0, let us solve edge problem

(1.1) by the differential factorization method

applying the algorithm described in [4]. Dur-

ing its application, the tangent fibration of the

oriented boundary @⌦0 is performed, and right

local coordinates with external normals xk2 and

tangents xk1 are introduced. The local coordi-

nates are arranged on the rectangle sides and

follow counterclockwise with the initial index

k = 1 on the upper side.

Let us introduce the Fourier transform op-

erators

F(↵k

1)' =

1
Z

�1

'(xk1) exp i↵
k

1x
k

1 dxk1,

F�1
(xk1)' =

1

2⇡

1
Z

�1

'(↵k

1) exp(�i↵k

1x
k

1) d↵
k

1 ,

F(↵k

1 ,↵
k

2)' =

1
Z

�1

1
Z

�1

'(xk1, x
k

2)

· exp i(↵k

1x
k

1 + ↵k

2x
k

2) dx
k

1 dxk2,

F�1
(xk1, x

k

2)' =

1

4⇡2

1
Z

�1

1
Z

�1

'(↵k

1 ,↵
k

2)

· exp
h

�i(↵k

1x
k

1 + ↵k

2x
k

2)

i

d↵k

1 d↵k

2 ,

k = 1, 2, 3, 4.

Applying the procedure of construction of au-

tomorphism of varieties in the factorization

method and calculating the Leray residue forms,

let us obtain in local sets of coordinates the pseu-

dodifferential equations of the block element in

the form
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F�1
(x11)

(

a

Z

�a

⇥

�A22
�

'0
12 � i↵1

2�'1
�

· exp i↵1
1⌘

1
1 d⌘11

�A22
�

'0
32 + i↵1

2�'3
�

· exp
⇥

�i
�

2↵1
2�b+ ↵1

1x
3
1

�⇤⇤

dx31

�
b

Z

�b

⇥

A11
�

'0
22 + i↵1

1'2
�

· exp
⇥

�i
�

↵1
2�b� ↵1

2�x
2
1 + ↵1

1a
�⇤⇤

dx21

�A11
�

'0
42 � i↵1

1'4
�

· exp
h

�i
�

↵1
2�b

+ ↵1
2�x

4
1 � ↵1

1a
�

i

dx41

)

= 0, (1.2)

x11 2 [�a, a],

F�1
(x21)

(

b

Z

�b

⇥

�A11
�

'0
22 � i↵2

2�'2
�

· exp i↵2
1⌘

2
1 d⌘21

�A11
�

'0
42 + i↵2

2�'4
�

· exp i
�

�2↵2
2�a� ↵2

1x
4
1

�

dx41
⇤

+

a

Z

�a

⇥

A22
�

�'0
12 + i↵2

1'1
�

· exp i
⇥

�
�

↵2
2�a� ↵2

1b+ ↵2
2�x

1
1

�⇤⇤

dx11

+A22
�

�'0
32 � i↵2

1'3
�

· exp i
h

�
�

↵2
2�a

+ ↵2
1b� ↵2

2�x
3
1

�

i

dx31

)

= 0, (1.3)

x21 2 [�b, b],

F�1
(x31)

(

a

Z

�a

⇥

�A22
�

'0
32 � i↵3

2�'3
�

· exp i↵3
1⌘

3
1 d⌘31

�A22
�

'0
12 + i↵3

2�'1
�

· exp i
⇥

�
�

2↵3
2�b+ ↵3

1x
1
1

�⇤⇤

dx11

+

b

Z

�b

⇥

�A11
�

'0
22 � i↵3

1'2
�

· exp i
⇥

�
�

↵3
2�b� ↵3

1a+ ↵3
2�x

2
1

�⇤⇤

dx21

�A11
�

'0
42 + i↵3

1'4
�

· exp i
h

�
�

↵3
2�b

+ ↵3
1a� ↵3

2�x
4
1

�

i

dx41

)

= 0, (1.4)

x31 2 [�a, a],

F�1
(x41)

(

b

Z

�b

⇥

�A11
�

'0
42 � i↵4

2�'3
�

· exp i↵4
1⌘

4
1d⌘

4
1

�A11
�

'0
22 + i↵4

2�'2
�

· exp i
⇥

�
�

2↵4
2�a+ ↵4

1x
2
1

�⇤⇤

dx21

+

a

Z

�a

⇥

�A22
�

'0
12 + i↵4

1'1
�

· exp i
⇥

�
�

↵4
2�a+ ↵4

1b� ↵4
2�x

1
1

�⇤⇤

dx11

+A22
�

'0
32 � i↵4

3'3
�

· exp i
h

�
�

↵4
2�a

� ↵4
1b+ ↵4

2�x
3
1

�

i

dx31

)

= 0, (1.5)

x41 2 [�b, b].

Not going into details, let us note that this class

of equations can be investigated and solved by

the method of study [5]. The general representa-

tion of the solution '
k

(xk1, x
k

2), i.e., of the block

element, after conversion of the set of pseudod-

ifferential equations, can be represented in each

local coordinate system xk1, x
k

2 in the form

'1(x
1
1, x

1
2) = F�1

(x11, x
1
2)K

�1
1

·
(

a

Z

�a

h

�A22
�

'0
12 � i↵1

2'1
�

exp i↵1
1⌘

1
1 d⌘11

�A22
�

'0
32 + i↵1

2'3
�

· exp
⇥

�i
�

2↵1
2b+ ↵1

1x
3
1

�⇤

dx31

i

�
b

Z

�b

h

A11
�

'0
22 + i↵1

1'2
�

· exp
⇥

�i
�

↵1
2b� ↵1

2x
2
1 + ↵1

1a
�⇤

dx21

�A11
�

'0
42 � i↵1

1'4
�

· exp
⇥

�i
�

↵1
2b+ ↵1

2x
4
1 � ↵1

1a
�⇤

dx41

i

)

,
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'2(x
2
1, x

2
2) = F�1

(x21, x
2
2)K

�1
2

·
(

b

Z

�b

h

�A11
�

'0
22 � i↵2

2'2
�

exp i↵2
1⌘

2
1 d⌘21

�A11
�

'0
42 + i↵2

2'4
�

· exp i
�

�2↵2
2a� ↵2

1x
4
1

�

dx41

i

+

a

Z

�a

h

A22
�

�'0
12 + i↵2

1'1
�

· exp i
⇥

�
�

↵2
2a� ↵2

1b+ ↵2
2x

1
1

�⇤

dx11

�A22
�

'0
32 + i↵2

1'3
�

· exp i
⇥

�
�

↵2
2a+ ↵2

1b� ↵2
2x

3
1

�⇤

dx31

i

)

,

'3(x
3
1, x

3
2) = F�1

(x31, x
3
2)K

�1
1

·
(

a

Z

�a

h

�A22
�

'0
32 � i↵3

2'3
�

exp i↵3
1⌘

3
1 d⌘31

�A22
�

'0
12 + i↵3

2'1
�

· exp i
⇥

�
�

2↵3
2b+ ↵3

1x
1
1

�⇤

dx11

i

+

b

Z

�b

h

�A11
�

'0
22 � i↵3

1'2
�

· exp i
⇥

�
�

↵3
2b� ↵3

1a+ ↵3
2x

2
1

�⇤

dx21

�A11
�

'0
42 + i↵3

1'4
�

· exp i
⇥

�
�

↵3
2b+ ↵3

1a� ↵3
2x

4
1

�⇤

dx41

i

)

,

'4(x
4
1, x

4
2) = F�1

(x41, x
4
2)K

�1
2

·
(

b

Z

�b

h

�A11
�

'0
42 � i↵4

2'4
�

exp i↵4
1⌘

4
1 d⌘41

�A11
�

'0
22 + i↵4

2'2
�

· exp i
⇥

�
�

2↵4
2a+ ↵4

1x
2
1

�⇤

dx21

i

+

a

Z

�a

h

�A22
�

'0
12 + i↵4

1'1
�

· exp i
⇥

�
�

↵4
2a+ ↵4

1b� ↵4
2x

1
1

�⇤

dx11

+A22
�

'0
32 � i↵4

3'3
�

· exp i
⇥

�
�

↵4
2a� ↵4

1b+ ↵4
2x

3
1

�⇤

dx31

i

)

,

K1(↵
m

1 ,↵m

2 ) = A11(↵
m

1 )

2
+A22(↵

m

2 )

2 �A,

m = 1, 3,

K2(↵
n

1 ,↵
n

1 ) = A22(↵
n

1 )
2
+A11(↵

n

2 )
2 �A,

n = 2, 4,

↵m

2±(↵
m

1 ) = ±i
q

A�1
22 (A11(↵m

1 )

2 �A),

m = 1, 3,

↵n

2±(↵
n

1 ) = ±i
q

A�1
11 (A22(↵n

1 )
2 �A),

n = 2, 4.

Here, we accept the following notations. In the

derivative '0
kn

and function '
k

, the first index

denotes the number of the coordinate system in

which the function is considered and the second

one denotes the coordinate along which differen-

tiation is performed. It is clear that when using

the formulas of transition from one coordinate

system to another one, we obtain the same func-

tion '(x1, x2). From the integral representation

of the solution, it is evident that it is available

for analytical investigation in each of introduced

local coordinate systems.

2. The Ball Block Elements

We construct block elements with a spher-

ical boundary by the differential factorization

method. Contrary to the approaches described

in [1–4], where simple factorization related to

the representation of the group of translational

motions of space was carried out, we applied

generalized factorization [5] in this case. This

approach is dictated by using the representation

of the group of rotations of space induced by

the sphere automorphism as a manifold with an

edge. As in [1–4], we construct the functional

and pseudo-differential equations for describing

the block element as well as the representation

of the solution for the boundary-value problem.

Below, without repeating the general case [5], we

presented the block elements for the ball and the

space with the cutout ball and the Helmholtz

equations derived for the boundary-value prob-

lems. The case under consideration is convenient

because it makes possible to demonstrate the

use of the method for problems solvable by other

approaches. When using the method, we open

distinctive features of the simple and generalized

factorizations the application of the methods in

an unlimited region, and the feature of satis-

fying the boundary conditions. The choice of
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the equation for the boundary-value problem

is related also to the fact that the solutions of

precisely this equation are the components of so-

lutions of a number of boundary-value problems

of a deformable-solid dynamic.

1. For an illustration, as an example, we

constructed here the block elements for the

boundary-value problem in the spherical region

⌦1 of radius b and in the space with the cutout

spherical region ⌦2 of the radius a with the

boundaries @⌦
s

, s = 1, 2, for the Helmholtz

differential equation in the form of

Q(@x1, @x2, @x3)'

=

⇥

@2x1 + @2x2 + @2x3 + k2
⇤

·  (x1, x2, x3) = 0. (2.1)

It is shown below that the pseudo-differential

equations for the block element enable us to

consider all possible variants of boundary condi-

tions ✓, ', r for the partial differential equation.

For this purpose, we considered both the Dirich-

let and Neumann boundary conditions as in the

previous problems.

In the spherical system of coordinates ✓, ',

r, Eq.(2.1) for the ball has the form

(�+ k21) = 0,

� =

1

r2
@

@r

✓

r2
@

@r

◆

+

1

r2
· 1

sin ✓
· @
@✓

✓

sin ✓
@

@✓

◆

+

1

r2 sin2 ✓

@2

@'2
, (2.2)

r, ✓,' 2 ⌦1.

A similar equation for the half-space with a

cavity is taken in the form of

(�+ k22)w = 0, r, ✓,' 2 ⌦2. (2.3)

The solutions of the boundary-value problems

for Eqs.(2.2), (2.3) are found in the spaces of

slowly increasing generalized functions HS. For

investigating this equation by the differential

factorization method, we introduce the Fourier–

Bessel transform and reversion in spherical func-

tions of the form of

B2(l,m) =

⇡

Z

0

2⇡
Z

0

g(✓,')Y m�
l

(✓,') sin ✓ d✓d'

= G(l,m),

B�1
2 (✓,')G =

1
X

l=0

l

X

m=�l

G(l,m)Y m+
l

(✓,')

= g(✓,'),

B3(�, l,m)g =

1
Z

0

⇡

Z

0

2⇡
Z

0

g(r, ✓,')J
l+ 1

2

(�r)

· Y m�
l

(✓,') sin ✓ d✓d' r dr

= G(�, l,m), (2.4)

B�1
3 (r, ✓,')G

=

1
X

l=0

l

X

m=�l

1
Z

0

G(�, l,m)J
l+ 1

2

(�r)

· Y m+
l

(✓,')� d� = g(r, ✓,').

Here J
⌫

(�r) is the Bessel function, and Y m

l

(✓, )
is the spherical function,

Y m±
l

(✓,')

=

1

2

s

2l + 1

⇡

(l � |m|)!
(l + |m|)!P

|m|
l

(cos ✓)e±im'.

Applying transforms (2.3) to Eq.(2.2), we con-

struct the external form [6, 7], which becomes

(P , Q, R – some functions)

! = Pb2 sin ✓d✓ ^ d'+Qb dr ^ d✓

+Rb sin ✓ d' ^ dr.

We carry out the transition to the functional

equation. It can be represented in the form [6,7]

K(�) (l,m,�) =

Z

@⌦

!,

K(�) = �2 � k21.

(2.5)

In the case of a ball, we have

(�2 � k2) (l,m,�) = L
lm

(�),

L
lm

(�)b2 0
lm

(b)T
lm

(�, b)

� b2 
lm

(b)T 0
lm

(�, b), (2.6)
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lm

(r) = B2(l,m) (r, ✓,'),

T
lm

(�, r) =
1p
r
J
l+ 1

2

(�r).

For providing the automorphism and ob-

taining the pseudo-differential equation, we con-

struct the representation of the boundary-value

problem solution as

 (r, ✓,') = B�1
3 (r, ✓,')

L
lm

(�)

(�2 � k21)
. (2.7)

The automorphism requirement consists in ful-

filling the equality [6, 7]

 (r, ✓,') = 0, r > b. (2.8)

As a result of simple transformations for the

simple problem under consideration, we obtain

a pseudo-differential equation degenerated into

an algebraic one in the form of

L
lm

(k1) = 0. (2.9)

In complex spatial problems, this equation is

pseudo-differential literally.

By the example of this problem, it is already

possible to observe the difference of the general-

ized factorization from the simple one: although

the characteristic equation K(�) has two roots,

Eq.(2.9) should be fulfilled only for one. A sim-

ilar problem considered by simple factorization

in a layer would require fulfilling Eq.(2.9) for

both roots.

Using pseudo-differential Eq.(2.9), we con-

sider the formulation of the boundary-value

problems for Eq.(2.2). In the case of setting

the Dirichlet conditions for the boundary @⌦
for example, in the form of

 (b, ✓,') =  0(b, ✓,'). (2.10)

The solution of pseudo-differential Eq.(2.9) is

obtained in the form of

 0
lm

(b) =
 
lm0(b)T 0

lm

(k1, b)

T
lm

(k1, b)
.

Here we accept the designation

 
lm0(b) = B2(l,m) 0(b, ✓,').

In the complex spatial problems, we obtain the

integral or integro-differential equation instead

of the algebraic one. For example, we applied

the integral factorization method [8] for its so-

lution.

Introducing this relation into Eq.(2.7) and

carrying out the necessary calculations, we ob-

tain that, for r ! b, there takes place

 (r, ✓,') !  0(b, ✓,'). (2.11)

By using precisely the same algorithm, we solved

the problem with the Neumann boundary condi-

tion. In this case, instead of boundary condition

(2.10), the condition for the derivative is set on

the boundary; i.e.,

 0
(b, ✓,') =  1(b, ✓,').

The solution of the pseudo-differential equation

has the form of

 
lm

(b) =
 0
lm1(b)Tlm

(k1, b)

T 0
lm

(k1, b)
.

Here

 
lm1(b) = B2(l,m) 1(b, ✓,').

Introducing this relation into Eq.(2.7) and car-

rying out the transformations, we again obtain

the fulfillment of boundary conditions as in the

Dirichlet problem; i.e.,

 0
(r, ✓,') !  1(b, ✓,'), r ! b, (2.12)

but for the classical component of the solution.

Remark 1. We particularly note that found

solution (2.7) of the boundary-value problem

in the space of slowly increasing generalized

functions H
S

consists of the classical compo-

nent and the generalized functions. If the ini-

tial boundary-value problems are formulated for

sufficiently smooth boundary conditions, for ex-

ample, providing that the solutions belong to

the Sobolev’s spaces, the classical component

coincides with this solution. The generalized

component appears only as a result of the dif-

ferentiation on the normal to the boundary @⌦
of the step-function carrier. This circumstance

is explained in detail in [9] and also in our sub-

sequent studies.

Relation (2.12) is obtained with taking into

account the remark made.

Thus, the pseudo-differential equation in-

volves all possible variants of formulation of the

boundary conditions of the problem.

2. We consider the boundary-value problem

for the space with a spherical cavity of radius

a for Eq.(2.3). Contrary to the finite-element

method, the block element can occupy even an

unlimited region. The requirement consists in
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the fact that the region be a manifold with an

edge and admits the automorphism. We note

that the boundary-value problem under consid-

eration in the unlimited region with material

k2 requires fulfilling the condition of radiation

at infinity for correctness of the formulation,

for which it is possible to use, for example, the

ultimate-absorption principle [10]. This princi-

ple dictates the requirement of the correspond-

ing arrangement of the integration contour on

the parameter � in representation (2.4) of the

operator B�1
3 . The contour should bend around

the material pole from below. Further, this

property of arranging the integration contour is

considered as accepted and taken into account

when using the indicated operator.

Similar to the previous case, we construct

functional Eq.(2.5) with the same representa-

tion of external forms. For this boundary-value

problem, it becomes

(�2 � k2)W (l,m,�) = N
lm

(�),

N
lm

(�) = b2w0
lm

(a)P
lm

(�, a)

� b2w
lm

(a)P 0
lm

(�, a), (2.13)

w
lm

(r) = B2(l,m)w(r, ✓,'),

P
lm

(�, r) =
1p
r
H(1)

l+ 1

2

(�r).

Here H(1)
⌫

(�r) is the Hankel function of the first

kind.

The general representation of the solution

can be written as

w(r, ✓,') = B�1
3 (r, ✓,')

N
lm

(�)

(�2 � k22)
. (2.14)

The automorphism of the manifold with an edge

(the spaces with the ball removed) is provided if

w(r, ✓,') = 0, r < a.

This requirement results in the following pseudo-

differential equation:

w0
lm

(a)P
lm

(�, a)�w
lm

(a)P 0
lm

(�, a) = 0. (2.15)

Similarly to the previous boundary-value prob-

lem in the region ⌦2 under consideration, the

differential factorization method can be used for

solving the boundary-value problems with both

Dirichlet and Neumann boundary condition re-

peating almost everything from the previous

section.

In the case of setting the Dirichlet boundary

condition in the form of

w(a, ✓,') = w0(a, ✓,')

the solution of pseudo-differential Eq.(2.15) is

represented as

w0
lm

(a) =
w
lm0(a)P 0

lm

(k2, a)

P
lm

(k2, a)
.

Here,

w
lm0(a) = B2(l,m)w0(a, ✓,').

The substitution of the solution into Eq.(2.14)

results for r ! a and r > a in the relation

w(r, ✓,') ! w0(a, ✓,').

As is stated in Remark 1, this convergence takes

place under the smooth boundary conditions in

the spaces of continuous functions.

When setting the Neumann boundary con-

dition as

w0
(a, ✓,') = w1(a, ✓,')

the solution of the pseudo-differential equation

is represented as

w
lm

(a) =
w0
lm0(a)Plm

(k2, a)

P 0
lm

(k2, a)
.

Here,

w
lm1(a) = B2(l,m)w1(a, ✓,').

According to Remark 1, the introduction of this

solution into relation (2.14) results in the fol-

lowing convergence for the classical component

of the solution for r ! a, r > a:

w0
(r, ✓,') ! w1(a, ✓,').

The block elements constructed above can used

for the formation of a more complex block struc-

ture conjugating the last ones. For example,

taking a > b and organizing the contact of sur-

faces of blocks, we obtain the spherical bearing

pair.

It is possible also to construct more complex

constructions. The problems of conjugating the

block elements are relatively simple and are sim-

ilar to conjugation in the layered structures;

certain examples are presented in [6, 7, 11]. The

boundary-value problems for more complex sys-

tems of the partial differential equations are

considered similarly.
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3. The cylindrical block elements

Block elements for the inner and outer

boundary problems with the cylindrical bound-

ary are constructed by the differential factor-

ization method. According to the approach

described in [1, 2], pseudodifferential equations

and representation of the solution of the bound-

ary problem are constructed. The determining

relations for various block elements with a cylin-

drical surface are presented. The selection of

the boundary problem is associated with the

fact that the boundary problems for the sets of

differential equations in partial derivatives are

investigated using the same approach, but this

is more complex technically compared with the

considered case. It is shown that the block ele-

ment method is convenient when investigating

the behaviour of the block structures in seis-

mology and no less convenient when describing

the quantum-mechanical properties of materi-

als [3, 4]. Particularly, the constructed pseudod-

ifferential equations for our block elements with

a cylindrical boundary preserve the same proper-

ties that were established for the block elements

with a spherical boundary. We discuss the pos-

sibilities of the block element method by the

example of the considered boundary problem.

1. Below, as an illustrative example, we

constructed the block elements for the inner

boundary problem in a confined cylinder ⌦1
with the radius b and in the space with a cut

confined cylinder ⌦2 with the radius a, where

we consider the outer boundary problem for the

Helmholtz differential equation of the form

Q(@x1, @x2, @x3)'

=

⇥

@2x1 + @2x2 + @2x3 + k2
⇤

·  (x1, x2, x3) = 0. (3.1)

It is shown that pseudodifferential equations of

the block element allow us to consider all the

possible variants of boundary conditions for the

differential equation in partial derivatives. For

this purpose, we consider the Dirichlet and Neu-

mann boundary conditions similarly to [1, 3–7].

In the cylindrical set of coordinates r, ', z,
Eq.(3.1) for the cylinder has the form

(�+ k21) = 0,

� =

1

r

@

@r

✓

r
@

@r

◆

+

@2

@z2
+

1

r2
@2

@'2
, (3.2)

r,', z 2 ⌦1.

We take a similar equation for the voided space

in the form

(�+ k22)w = 0, r,', z 2 ⌦2. (3.3)

We seek the solutions of boundary problems for

Eqs.(3.2) and (3.3) in the spaces of slowly rising

generalized functions H
s

. In the case of the

outer boundary problem, the radiation condi-

tion providing the uniqueness of the solution is

fulfilled.

To investigate this equation by the differ-

ential factorization method, let us introduce

the double and triple transformation and the

Fourier–Bessel inversion in the form

B3(✓, p,�)u =

b

Z

0

2⇡
Z

0

c

2

Z

c

1

u(r,', z)J
p

(✓r)

· exp [i(p'+ �z)] r drd'dz

= U(✓, p,�),

B�1
3 (r,', z)U

=

1

2⇡

1
Z

�1

1
Z

0

1
X

p=�1
U(✓, p,�)J

p

(✓r)

· exp [�i(p'+ �z)] ✓ d✓d�

= u(r,', z),

B21(p,�)u =

2⇡
Z

0

c

2

Z

c

1

u(', z)J
p

(✓0R)

· exp [i(p'+ �z)]R d'dz

= U(p,�), (3.4)

B�1
21 (', z)U =

1

2⇡

1
Z

�1

1
X

p=�1
U(p,�)J

p

(✓0R)

· exp [�i(p'+ �z)] ✓0 d� = u(', z),

B23(✓, p)u =

b

Z

0

2⇡
Z

0

u(r,')J
p

(✓r)

· exp [i(p'+ �0zs)] r drd' = U(✓, p),
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B�1
23 (r,')U =

1

2⇡

1
Z

0

1
X

p=�1
U(r, p)J

p

(✓r)

· exp [�i(p'+ �0zs)] ✓ d✓ = u(r,').

Here, J
⌫

(�r) is the Bessel function.

Applying transformations (3.4) to Eq.(3.2),

let us construct the exterior form [1,3–6], which

looks like

! = g

"

r

✓

@ 

@r
� ✓J 0

p

(✓b)J�1
p

(✓b) 

◆

d' ^ dz

� 1

r

✓

@ 

@'
� ip 

◆

dr ^ dz

+ r

✓

@ 

@z
� i� 

◆

dr ^ d'

#

, (3.5)

g(r,', z) = J
p

(✓r) exp [i(p'+ �z)]

Let us perform the transition to the functional

equation and find it in the form

K(✓,�) (✓, p,�) =

Z

@⌦
1

!,

K(✓,�) = (✓2 + �2 � k21).

(3.6)

Let us represent the region boundary in the

form @⌦1 = @⌦10 [ @⌦20, where @⌦10 is the

side cylindrical part of the boundary @⌦10, and

@⌦20 is the end part consisting of two parts,

namely, @⌦21is the end z = c1 and @⌦22 is the

end z = c2. Let us introduce the solutions at

the region boundaries denoting the values of the

function  at the boundaries @⌦10, @⌦21 and

@⌦22 as  
r

,  
z1,  z2 respectively.

Applying the conventional algorithm of con-

struction of pseudodifferential equations asso-

ciated with the construction of the tangential

separation of the boundary [1, 3–7], let us intro-

duce the curvilinear local coordinate systems at

each boundary @⌦
⌫

. The automorphism require-

ment [2] leads to the following pseudodifferential

equations:

F�1
2 (r)P1(✓,��, b, c1, c2) exp [�i��c1] = 0,

r 2 [0, b] , �± = ±i
q

✓2 � k21,

F�1
2 (r)P1(✓,�+, b, c1, c2) exp [�i�+c2] = 0

r 2 [0, b] ,

P1(✓,�, b, c1, c2)

=

c

2

Z

c

1



J
p

(✓b)
@ 

rp

@r
� ✓J 0

p

(✓b) 
rp

�

b exp i�z dz+

+

b

Z

0

J
p

(✓r)



@ 1p

@z
� i� 1p

�

r exp i�c1 dr+

+

b

Z

0

J
p

(✓r)



@ 2p

@z
� i� 2p

�

r exp i�c2 dr,

 

⌫p

= B1(r, p, z) ⌫

.

The derived pseudodifferential equations allow

us to form the integral equations for all the pos-

sible variants of boundary problems, which can

be constructed for differential equation (3.1).

This is described in more detail in [8–10]. The

solution of these integral or integro-differential

equations gives the solution of pseudodifferen-

tial equations. Representation of the solution

obtained after the inversion of pseudodifferential

equations is given by relationship

 (r,', z) = B�1
3 (r,', z)K�1

(✓,�)

Z

@⌦
1

!.

2. Let us consider the case of the boundary

problem for the equation

(�+ k22)w = 0

in the region

⌦2 : a  r  1, �1  z  c1, c2  z  1.

In contrast with the case considered in [1] for

the outer region having a single-type boundary,

the region is outer in this case, while the di-

verse boundary contains cylindrical and planar

components. For this reason, we are forced to

use three block elements for the description of

the mentioned block structure. It is noteworthy

that the block elements can be selected by vari-

ous methods. The problem is assuring that their

number would be minimal and they would de-

scribe our zones of interest of the block structure

under study in the most favorable manner.

Let us introduce the block elements by two

methods. The first is obtained by the dissection

of the region ⌦2 by the planes infinitely continu-

ing the cylinder ends. To realize the second case,

the cylindrical boundary is infinitely continued

in both directions. In the first case, we acquire

three block elements in the form of a layer with
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a cylindrical orifice and two half-spaces. In the

second case, we have block elements in the space

with a cut cylinder and two semi-infinite cylin-

ders.

Let us introduce the following notation for

the solutions at the boundary of the region ⌦2:

w(a,', z) = w
r

, c1 6 z 6 c2,

w(r,', c1) = w1 and w(r,', c2) = w2,

0 6 r 6 a.

Retaining the above-described notation of

the boundaries of the cylindrical and repeating

the construction of the pseudodifferential equa-

tion, we come to their following representation

in the first case:

F�1
1 (z)P2(✓1,�, b, c1, c2) = 0,

z 2 [c1, c2] , ✓1 = i
q

�2 � k22,

F�1
2 (r)P2(✓,��, a, c1, c2) exp [�i��c1] = 0,

r 2 [a,1] ,

�± = ±i
q

✓2 � k22,

F�1
2 (r)P2(✓,�+, a, c1, c2) exp [�i�+c2] = 0,

r 2 [a,1] ,

F�1
2 (r)P�

2 (✓,��, b, c1, c2) exp [�i��c1] = 0,

r 2 [0,1] ,

F�1
2 (r)P+

2 (✓,�+, b, c1, c2) exp [�i�+c2] = 0,

r 2 [0,1] .

We here accepted the notation

P2(✓,�, a, c1, c2)

=

c

2

Z

c

1



H(1)
p

(✓a)
@W

rp

@r
� ✓{H(1)

p

(✓a)}0W
rp

�

· a exp i�z dz

+

1
Z

a

J
p

(✓r)

"

@W+
1p

@z
� i�W+

1p

#

r exp i�c1 dr

+

1
Z

a

J
p

(✓r)

"

@W+
2p

@z
� i�W+

2p

#

r exp i�c2 dr,

W
⌫p

= B1(r, p, z)w⌫

P�
2 (✓,�, a, c1)

=

1
Z

0

J
p

(✓r)

"

@(W1p +W+
1p)

@z
� i�(W1p +W+

1p)

#

· r exp i�c1 dr,

P+
2 (✓,�, a, c2)

=

1
Z

0

J
p

(✓r)

"

@(W2p +W+
2p)

@z
� i�(W2p +W+

2p)

#

· r exp i�c2 dr,

W+
⌫p

= 0, r 6 a, ⌫ = 1, 2.

In the second case, we derive the set of pseu-

dodifferential equations

F�1
1 (z)P21(✓2,�, a) = 0,

z 2 [�1,1] , ✓2 = i
q

�2 � k22,

F�1
1 (z)P11(✓,��, a, c1) exp [�i��c1] = 0,

�1 6 z 6 c1,

F�1
1 (z)P12(✓,�+, a, c2) exp [�i�+c2] = 0,

c2 6 z 6 1,

�± = ±i
q

✓2 � k22,

F�1
2 (r)P11(✓,��, a, c1) exp [�i��c1] = 0,

0 6 r 6 a,

F�1
2 (r)P12(✓,�+, a, c2) exp [�i�+c2] = 0,

0 6 r 6 a,

P21(✓,�, a)

=

1
Z

�1

"

H(1)
p

(✓a)
@(W

rp

+W�
rp

+W+
rp

)

@r

� ✓{H(1)
p

(✓a)}0(W
rp

+W�
rp

+W+
rp

)

#

· a exp i�z dz,

P11(✓,�, b, c1, c2)

=

c

1

Z

�1

"

J
p

(✓b)
@W�

rp

@r
� ✓J 0

p

(✓b)W�
rp

#

· a exp i�z dz

+

a

Z

0

J
p

(✓r)



@W1p

@z
� i�W1p

�

r exp i�c1 dr,
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P12(✓,�, b, c1, c2)

=

1
Z

c

2

"

J
p

(✓b)
@W+

rp

@r
� ✓J 0

p

(✓b)W+
rp

#

· a exp i�z dz

+

a

Z

0

J
p

(✓r)



@W2p

@z
� i�W2p

�

r exp i�c2 dr.

w±
r

(a,', z) = B�1
1 (a,', z)W±

rp

.

Here, functions w±
r

(a,', z) differ from zero at

�1 6 z 6 c1 in the case of a minus at the

superscript and c2 6 z 6 1 in the case of

a plus, respectively. The functions W�
rp

, W+
rp

,

W+
1p participating in these representations are

auxiliary and can easily be eliminated from the

presented sets of pseudodifferential equations

using operators (3.4). However, this should be

made after the statement of the problem when

the set of boundary conditions is determined.

More concretely, it is determined for which frag-

ments of the boundary regions the values of

functions, their normal derivatives, or mixed

conditions are specified. After this, the pseu-

dodifferential equations are reduced to integral

or integro-differential equations. In view of sim-

plicity, this part of transformations is omitted.

The representation of the solution is given by

the relationship

 (r,', z) = B�1
3 (r,', z)K�1

(✓,�)

Z

@⌦
2

!.

It is noteworthy that when using the opera-

tor B�1
3 , the integration contours should be

arranged correctly to provide for the radiation

conditions at infinity, for example, applying the

limiting absorption principle [10,11].

Thus, similarly to other boundary prob-

lems [1, 3–9], pseudodifferential equations serve

in the formulation of all the possible types of

boundary problems admissible by the differen-

tial equation under consideration.

Note 1. The application of the block ele-

ment method described in our article is given

as an illustration, which simultaneously shows

its distinction from the finite element method

and the boundary element method. The de-

scribed constructions for the set of differential

equations in partial derivatives, which neverthe-

less require the involvement of factorization of

matrix functions, are performed similarly [8, 9].

Note 2. The above-constructed block ele-

ments for the block structure, which describe

its acoustical properties, allow us to construct

by analogy the representation of solutions in

any complex acoustic block structure with the

totalities of the sources in the complex-shaped

regions and to investigate the questions of reso-

nances including addresses. For this purpose, a

pre-existing rather large set of block elements

should be used [1, 3–7]. In particular, we can

state the problems on the directed acoustic an-

tennas [10] in block structures.

Let us note the main advantages of the use

of the block element method to solve such prob-

lems. These are the possibility to “cut out” the

block structure by sections into the block ele-

ments depending on the stated problem, the use

of a rich apparatus of investigation and solution

of integral equations of the mixed problems, and

the possibility to represent the solutions in each

block in the form of the Fourier integral with the

dispersion equation in the denominator of the

inegrand, which allows us to exactly describe

the wave process in the block structure [10,11].

4. Automorphism in factorization

When using factorization methods for inves-

tigating and solving boundary-value problems in

block structures, pseudo-differential equations

play an important role. They play the role [1–5]

of certain “managers” in formulation and imple-

mentation of the boundary-value problem. By

varying its parameters, it is possible to set the

boundary-value problems, both basic and mixed.

Interesting properties of these operators were

found when investigating the boundary-value

problems of quantum mechanics.

In unsteady boundary-value problems, the

pseudo-differential operators transfer the initial

conditions into the category of boundary con-

ditions. The pseudo-differential equations in

investigating the resonance properties of block

structures in the block-element method and in

solving boundary-value problems with separat-

ing variables by this method.

The method of constructing pseudo-

differential equations is based on the require-

ment of the automorphism of the manifolds

with an edge, i.e., the carriers on which the

boundary-value problem is formulated. The

basic theorem, the proof of which was for the

first time published in, is the basis for fulfilling

the automorphism. It is of interest to clarify
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the relation between the automorphism and the

pseudo-differential equations using the various

methods of their construction. Below by the

example of the scalar boundary-value problem

in the convex region with a piece-wise smooth

boundary for the elliptic partial differential equa-

tion with constant coefficients, we construct a

pseudo-differential equation of the boundary-

value problem by the Wiener–Hopf method and

study its relation to the automorphism. It is

proved that implementing the automorphism

and vanishing the pseudo-differential equation

are equivalent requirements.

1. The above boundary problem the initial

Cartesian system of coordinates is given by the

equation

Q(@x1, @x2, @x3)'

=

2M
X

m=1

2P
X

p=1

2N
X

n=1

A
mpn

'(m)
x

1

(n)
x

2

(n)
x

3

= 0, (4.1)

A
mpn

= const, ' (x) = ' (x1, x2, x3) ,

x = {x1, x2, x3} , x 2 ⌦.

Without repeating the traditional procedure

of reducing the boundary-value problem to the

functional equation, we write it in the form.

K⌫

(↵⌫

)'⌫

(↵⌫

) =

ZZ

@⌦

!⌫ ,

�Q (�i↵⌫

1 ,�i↵⌫

2 ,�i↵⌫

3)

⌘ K⌫

(↵⌫

1 ,↵
⌫

2 ,↵
⌫

3). (4.2)

!⌫

is the external form generated by the dif-

ferential equation on the manifold ⌦. It is

dependent on all derivatives of the function

' up to the order 2N � 1 inclusively consid-

ered on the boundary @⌦. It is the polyno-

mial K⌫

(↵⌫

) = K⌫

(↵⌫

1 ,↵
⌫

2 ,↵
⌫

3) of three com-

plex variables in the system of coordinates x⌫ of

the boundary tangential stratifications. The

↵⌫

1 ,↵
⌫

2 ,↵
⌫

3 are the parameters of the Fourier

transform '⌫

(↵⌫

) of the desired function of the

boundary-value problem. The axis x⌫3 is directed

along the normal to the boundary.

We designate the zeros of the polynomial

lying in the upper half-plane for the plus sign

and in the lower half-plane for the minus sign

assuming a multiplicity of one. We consider that

the number of zeros of each group is N in each

system of coordinates. We also consider that a

certain portion of the boundary @⌦ lies in the

plane x⌫3 = 0. The addition of this portion up

to the entire boundary is designated as @⌦1.

According to the differential factorization

method, (4.2) should be fulfilled in each system

of coordinates x⌫

of the boundary tangential

stratifications. Taking into account that ⌦ is

always located in the region x⌫3 6 0, (4.2) can

be rewritten as

K⌫

(↵⌫

)'⌫

�(↵
⌫

) = F ⌫

�, F ⌫

� =

ZZ

@⌦

!⌫ . (4.3)

Here we use the designation of functions regular

in the upper (the plus again) or lower (the mi-

nus sign) half-planes, which is traditional for the

factorization methods [7, 8]. The obtained rela-

tion is an incomplete functional Wiener–Hopf

equation because there is no second unknown

function regular in the upper half-plane.

We apply the technique of solving the func-

tional Wiener–Hopf [7, 8] equations to it. The

solution is sought in the class H
s

of slowly in-

creasing generalized functions. We implement

the differential factorization of the coefficient

K⌫

(↵⌫

) of characteristic (4.3) as the function of

the parameter ↵⌫

3 .

K⌫

(↵⌫

) = K⌫

+(↵
⌫

)K⌫

�(↵
⌫

),

K⌫

±(↵
⌫

) =

N

⇧

r=1
(↵⌫

3 � ↵⌫

3r⌥).

We divide Eq.(4.3) and introduce the designa-

tions.

⇥

K⌫

+(↵
⌫

)

⇤�1
F ⌫

�1

=

⇥

K⌫

+(↵
⌫

)

⇤�1
ZZ

@⌦
1

!⌫

= D⌫

+ T ⌫ ,

⇥

K⌫

+(↵
⌫

)

⇤�1
F ⌫

�0

=

⇥

K⌫

+(↵
⌫

)

⇤�1
ZZ

@⌦
0

!⌫

= L⌫

+B⌫ ,

F ⌫

� = F ⌫

�0 + F ⌫

�1.

Here, D⌫

is the polynomial of the variable ↵⌫

3
of the order N � 1 with the coefficients in the

form of exponential functions dependent on ↵⌫

3
and decreasing in the lower half-plane, T ⌫

is

the remainder of division of the functions F ⌫

�1,

on the K⌫

+(↵
⌫

). L⌫

is the polynomial with the

coefficients dependent on ↵⌫

1 , ↵
⌫

2 , and B⌫

is a
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rational function – the remainder of division of

the polynomials F ⌫

�0 on the K⌫

+(↵
⌫

).

Applying the conventional factorization tech-

niques, we come to the relations [7, 8].

'⌫

�(↵
⌫

)

⇥

K⌫

�(↵
⌫

)

⇤�1

·
⇥

D⌫

+ L⌫

+ T ⌫

� +B⌫

� +G
⇤

, (4.4)

T ⌫

+ +B⌫

+ �G = 0. (4.5)

When constructing formulas (4.4), (4.5), we used

the factorization relations in the form of the sum

of analytical functions set in a certain regularity

band containing the material axis Im↵⌫

3 = 0

and having the form [7,8].

⇥

K⌫

+(↵
⌫

)

⇤�1
T ⌫

= T ⌫

+ + T ⌫

�,

⇥

K⌫

+(↵
⌫

)

⇤�1
B⌫

= B⌫

+ +B⌫

�.

Here G is the polynomial of the order N � 1 of

the variable ↵⌫

3 with arbitrary coefficients aris-

ing due to the estimate of the whole function

in the entire plane (Liuvill’s Theorem). The

coefficients depend on the parameters ↵⌫

1 , ↵
⌫

2 .

2. We carry out the following relation the

pseudo-differential equation of a boundary-value

problem in the block-element method.

Definition 1. We call the following relation

the pseudo-differential equation of a boundary-

value problem in the block-element method.

T ⌫

+ +B⌫

+. (4.6)

Definition 2. The following relation

is called the manifold automorphism of a

boundary-value problem in the block-element

method

' (x) = ' (x1, x2, x3) = 0,

x = {x1, x2, x3} /2 ⌦. (4.7)

Theorem 1. In the block-element method

for boundary-value problem (4.1), the condi-

tions of fulfilling automorphism and vanishing

the pseudo-differential equation are equivalent.

Proof. Let us present several methods of

proving this theorem.

1) We first consider the region ⌦ differ-

ent from the half-space. Then it follows from

Eq.(4.2) that the fulfillment of condition (4.4)

is possible only under the condition that G = 0.

From here Eq. follows (4.6).

Conversely, if Eq.(4.6) takes place, the equal-

ity G = 0 follows from Eq.(4.5), which provides

the automorphism.

Let us consider now the case when the re-

gion ⌦ is a half-plane. In this case, (4.4), (4.5)

become

'⌫

�(↵
⌫

) =

⇥

K⌫

�(↵
⌫

)

⇤�1 ⇥
L⌫

+B⌫

� +G
⇤

, (4.8)

B⌫

+ �G = 0. (4.9)

Relation (4.8) provides the automorphism be-

cause the function

⇥

K⌫

�(↵
⌫

)

⇤�1
G is the Fourier

transform of the function with the carrier in

the region ⌦. Let us consider (4.9). Being the

function of the parameter ↵⌫

3 , it represents the

sum of the rational function and the polynomial.

The last term can be zero for all ↵⌫

3 if and only

if the following equalities take place,

B⌫

+ = 0, G = 0.

For proving the opposite statement, we rule out

the polynomial G from (4.8), (4.9) and obtain

the expression in the form of

'⌫

�(↵
⌫

) =

⇥

K⌫

�(↵
⌫

)

⇤�1 ⇥
L⌫

+B⌫

� +B⌫

+

⇤

.

From the last formula, it can be seen that the

function ' (x) has the carrier in the region ⌦

if and only if the pseudo-differential equation

B⌫

+ = 0 vanishes.

2) The second proof is based on the repre-

sentation of functional (4.3) in the form

'⌫

�(↵
⌫

) = [K⌫

(↵⌫

)]

�1 F ⌫

�, (4.10)

and the subsequent factorization in the form of

the sum of the right-hand side, which gives the

relations.

[K⌫

(↵⌫

)]

�1 F ⌫

� = M⌫

+ +M⌫

�,

'⌫

�(↵
⌫

) = M⌫

�, M⌫

+ = 0.
(4.11)

The proof of the theorem is obvious.

3) The third method assumes the direct cal-

culation of the representation of the solution

outside of the region ⌦ in the local system of

coordinates and the use of the requirement of

its vanishing, i.e., fulfilling automorphism. As a

result of transformations, the pseudo-differential

equations are obtained from this condition [1,9].

All three methods lead to the same results.

⇤
The proved theorem is generalized to the

case of the sets of partial differential equations.

In the general vector case, the following is valid.
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Theorem 2. In the block-element method

for the set of partial linear differential equa-

tions with constant coefficients, the conditions

of the fulfilling automorphism and vanishing the

pseudo-differential equation are equivalent.

The proof of the theorem is similar to those

presented above; however, it has specificity. We

restrict ourselves to certain marks.

Seemingly the most accessible for construct-

ing the pseudo-differential equation, the sec-

ond method giving the matrix representation of

pseudo-differential (4.11), in the vector case, in

practice, gives the degenerated matrix M⌫

+, and

the extraction of independent relations from it

is quite a challenge [10].

The first method is preferable in the com-

bination with the factorization of the polyno-

mial matrix functions developed in [11,12]. The

third method is most general because it can be

used also in the curvilinear coordinates instead

of only in the Cartesian coordinates. In this

case, it is combined with the factorization of

the matrix functions. As is known, the class

of the boundary-value problems admitting the

reduction to the Wiener–Hopf equations is quite

restricted. In particular, it is great rarity in

curvilinear coordinates. Therefore, there is no

hope for obtaining functional equations similar

to (4.3). It is preferable to construct the pseudo-

differential equations considering the manifold

automorphism as more accessible for analysis, es-

pecially when the case in point is the boundary-

value problems for the sets of partial differential

equations, which are difficult in formulation.

However, as was stated above, the use of these

theorems is justified only in connection with

the proof of the theorem about the boundary

properties of the solutions of problems under

investigation established in [6].

5. General properties of block elements

The results of determination of block ele-

ments proposed in [1–4] mainly for boundary-

value problems with constant coefficients give

the methods of their construction, from which

it is possible to see the close relation of these el-

ements to a particular boundary-level problem.

This circumstance induces the problem on a

possible restriction of using block elements that

have their origin in particular boundary-value

problems.

In this paper, we present results describ-

ing the relation between the block elements for

different boundary-value problems, which show

that important relations can exist between the

block elements of these boundary-value prob-

lems. The listed set of properties of block ele-

ments enables us to use them more widely in

various fields.

1. The possibilities of the block-element

method are displayed by its use in a number of

polytypic problems presented below.

In [1–4], the concept of a block element

is introduced, and a number of examples of

particular block elements are given for certain

boundary-value problems. It is shown that the

block elements are determined by the boundary-

value problem and can always be constructed for

an unambiguously solvable boundary-value prob-

lem formulated for a set of partial differential

equations of a finite order with constant coeffi-

cients in the region with a piece-smooth bound-

ary [5–7]. They also can be constructed for the

boundary-value problems with variable coeffi-

cients admitting the separation of variables [8].

In the general case of the boundary-value

problems with variable coefficients, their region

of formulation of the boundary-value problem is

divided by a mesh for using the block-element

method. The mesh should be so dense that it

could be possible to consider the coefficients in

a division cell as constant [1–4,9].

A certain practice of applying the block el-

ements shows that their use simplifies the for-

mulation of a number of boundary-value prob-

lems and also the construction of their solu-

tions. For example, the block-element method

makes it possible to solve the boundary-value

problems for homogeneous and inhomogeneous

sets of partial differential equations in a sim-

ilar way [7]. For its use, it is unnecessary to

construct individually the general solutions of

homogeneous differential equations and the par-

tial solutions of inhomogeneous equations with

the subsequent fulfillment of boundary condi-

tions. In the unsteady boundary-value prob-

lems, the block-element method raises both the

edge boundary conditions for sets of partial dif-

ferential equations and the initial conditions

of a boundary-value problem [10] to the rank

of boundary conditions; i.e., the initial con-

ditions in the block-element method become

the boundary conditions. The block-element

method makes it possible to consider the same

boundary-value problems in the bounded, semi-

bounded, and unbounded regions.
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The block elements enable us to simplify the

derivation of certain important characteristics

of the solution.

For example, the block elements describe

the state function and the wave function of an

elementary particle in the problems of quantum

mechanics [11]. The normalized square of the

modulus of its Fourier transform, which requires

no calculation, gives the probability of keeping a

particle in the block-element-carrier zone. Vary-

ing the shape of the block-element carrier, it

is possible to obtain quantum-mechanical ob-

jects, which are more complicated than the quan-

tum wells, wires and dots [11]. The pseudo-

differential equations arising in these problems

involve all cases of the particle energy state in

the same way.

In the problems of continuum mechanics, the

functions on the boundaries of the block-element

carrier, which either require a determination or

are set and included in the pseudo-differential

equations, are the particular physical charac-

teristics of the solution of the boundary-value

problem under consideration.

For example, in the problems of elasticity

theory, these are the displacements or stresses on

the block-element boundary; in the problems of

the theory of plates, they are the displacements,

angles of rotation, or shear and normal forces

and moments. In the boundary-value problems

of electrodynamics, it is the electric potential,

the electric charge, the tangential component of

the electric-field vector, and the normal compo-

nent of the electric induction.

2. By the example of a particular boundary-

value problem, we present certain general proper-

ties of the block elements revealing their features

and admitting the generalization on the general

case. Here and below, considering the construc-

tion of solutions of a boundary-value problem

by the block-element method, we mean that the

solution of the corresponding pseudo-differential

equations was constructed.

Let an unambiguously solvable boundary-

value problem for the set of the partial differen-

tial equations of a finite order with constant co-

efficients be considered in the convex singly con-

nected polyhedral region ⌦ with the boundary

@⌦ [7]. The block elements of such a boundary-

value problem represent the vectors, the compo-

nents of which are block elements similar to the

scalar ones in the case of the boundary-value

problem for a single differential equation. Fur-

ther, we do not distinguish these two concepts

calling them block elements in both cases.

Let us consider various divisions of the re-

gion ⌦ by the mesh, the boundaries of which

represent various planes. As a result, the re-

gion ⌦ is divided into n polyhedral convex re-

gions ⌦

k

(n), k = 1, 2, . . . , n . Rejecting certain

boundaries in the division mesh, we obtain a

new division of the region ⌦ containing a smaller

number of larger regions ⌦

k

(p), k = 1, 2, . . . , p,
p < n , each of which can be a combination

of several regions ⌦

k

(n)). Continuing the pro-

cess of elimination of boundaries of the divi-

sion mesh, we obtain the sequence of divisions

1 < p1 < p2 < . . . < n.

In the case of p = 1, we obtain a single cell,

which proves to the region ⌦.

The number n can be either finite or tend

to infinity.

For each division p
r

, we designate the block

element corresponding to it as B
k

(p
r

). We in-

troduce the concept of the combination

B
k

(p
r

) = B
l

(p
s

) [B
h

(p
s

), r < s, (5.1)

for the block elements contacting over the gen-

eral boundary, which consists in constructing

the block element located on the combination of

their carriers. The number of united elements

can be arbitrarily finite.

After constructing the solutions ' of the

boundary-value problem for each of the divisions

by the block-element method, for doing which

we convert the corresponding pseudo-differential

equations [7], we obtain the representation of

solutions for each r in one of the following forms:

' =

X

k

B
k

(p
r

),

r = 1, 2, . . . , n, p1 = 1, p
n

= n.

(5.2)

The cited formula displays the completeness of

the block elements in H
s

for each of the divisions.

We consider in more detail (5.1), we obtain the

representation of the function ', which is invari-

able in the left-hand side and expanded in terms

of larger block elements.

Thus, for constructing the solution of the

boundary-value problem by the block-element

method, it is possible to diversify the choice of

divisions of the region ⌦ in which the boundary-

value problem is formulated by the mesh on the

basis of the reasons of an optimum selection

of the corresponding block elements and their
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conjugation by means of solving the pseudo-

differential equations. The fulfillment of this

requirement substantially depends on the shape

of the region of formulation of the boundary-

value problem and the type of the differential

equations for which it is formulated.

The practice of application of the block-

element method shows that for constructing

the block elements, it is possible in certain cases

also to use other methods, which enable us to

implement more quickly their derivation along-

side with the general approach based on using

the automorphism of varieties [8].

Let us consider the block elements intro-

duced previously in [1–4,7, 9]. Obviously, each

of them displays the right-hand sides of inhomo-

geneous differential equations and the boundary

conditions of the carrier taken in certain spaces

H
s

as a function in the open internal region of

the carrier. The following statement is valid.

Theorem 1. The set of block elements

of the boundary-value problem unambiguously

solvable in certain space H
s

and considered in

the region ⌦ with the piece-smooth boundary

@⌦ represents a topological set with the topol-

ogy having the structure of hat of the ⌦-region.

In the problems of continuum mechanics,

the topology in the space containing the region

⌦ is induced by the Euclidean space.

These are the boundary-value problem for-

mulated in a certain region ⌦ with the boundary

@⌦ that are responsible for the block-element

origin and analytical properties. This theorem

is related to the representation of solutions of

the boundary-value problems in the form of an

expansion in terms of the block elements capa-

ble of being united in the elements with larger

carriers leaving invariable the solution ' of the

boundary-value problem.

This theorem explains the possibility of

choosing a rich arsenal of every possible region

admitted by the accepted topological structure

and a particular boundary-value problem as the

carriers of block elements. Each block-element

carrier can have its own local system of coor-

dinates, the relation of which with the local

systems of carriers of neighboring blocks is con-

trolled by a map [12,13].

3. The results displayed below show that

the dependence of the block element on the

boundary-value problem is not an invariable

property.

Let us consider two boundary-value prob-

lems unambiguously solvable in H
s

, for the set

of partial differential equations with constant co-

efficients of an identical order having unknown

vector functions of an identical dimension in

the region ⌦ with the piece-smooth boundary

@⌦ [7].

The following statement takes place.

Theorem 2. The solution of one of the

above boundary-value problems admits the rep-

resentation in the form of the expansion in terms

of block elements of another boundary-value

problem considered in the region ⌦ with the

boundary @⌦.

4. We consider the boundary-value problem

in the region ⌦ with the boundary @⌦ unam-

biguously solvable in Hs with respect to the

vector function '1 for the set of partial differ-

ential equations of a finite order with variable

coefficients and without features.

We consider the previous boundary-value

problem in the region ⌦ with the boundary @⌦
with respect to the vector function of the same

dimension for the set of the same partial differ-

ential equations in which the constant values are

found instead of variable coefficients providing

the unambiguous resolvability of the boundary-

value problem in H
s

.

The following statement is valid.

Theorem 3. The solution '1 of the

boundary-value problem with variable coeffi-

cients admits the representation of the form of

the expansion in terms of the block elements

of the boundary-value problem with constant

coefficients.

Remark. The idea of using the “frozen-

coefficient” technique, i.e., the replacement of

variable coefficients in the differential equations

of the boundary-value problem for constant val-

ues, was applied by Academician I. I. Vorovich

when constructing the mathematical model of

water resources of the Azov Sea basin [14]. How-

ever, there was no block-element method that

time, and the applied technique had an a priori

approximate character.

5. The possibilities of using the block-

element method are even more extended due

to the property presented below.

Let us consider the boundary-value problem

for the set of partial differential equations of

finite order unambiguously solvable in H
s

with
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the maximum derivative ⌫ in the region ⌦ with

the boundary @⌦ [7].

Let us designate the space of functions,

which are continuously differentiated � times

with respect to all variables including the mixed

ones.

It is valid as follows.

Theorem 4. An arbitrary vector function

' from C
�

(⌦), � > ⌫, can be represented as

the expansion in terms of the block elements

unambiguously solvable in a certain space H
s

of the boundary-value problem for the vector

function of the same dimension considered in

the region ⌦ with the piece-smooth boundary

@⌦ having the maximum derivative of the order

⌫ in the differential equations.

This theorem opens ample possibilities for

the most different applications of block elements.

Alongside with the results presented, these pos-

sibilities increase with using various forms of

automorphism of varieties [15].

6. The factorization methods in block
elements

We present a comparative analysis of two

factorization methods used in applied mathe-

matical physics and continuum mechanics [1–4].

We justify the necessity of their separation into

integral and differential factorization methods,

depending on the problems they are applied to.

For the differential factorization method, a new

algorithm for its application to boundary value

problems is described that is a generalization

of the results obtained in [4]. It is shown that

the method reduces boundary value problems

for systems of partial differential equations to

an analogue of a single equation.

1. A common feature of the factorization

methods that the analytic functions generated

by integral transformations are regular in cer-

tain complex domains depending on the sup-

ports of the functions subject to the integral

transformations. Other common features are a

reduction of original problems to the study of

certain functional equations and the possibility

of constructing exact solutions for half-spaces.

An advantage of the factorization methods is

that the solution is represented in integral form.

As a result, the solution can be analyzed and the

input parameters of the problems can be varied

to achieve the desired properties of the solution.

However, the factorization methods deserve a

classification according to their functions and

capabilities, since they solve different problems

and are based on different approaches.

2. The integral factorization method devised

in [1] was based on the study and solution of in-

tegral equations or their systems given on a half-

line with a difference kernel. Integral equations

of these kinds, known as Wiener–Hopf equa-

tions, are generated by boundary value prob-

lems for differential equations with a change in

the boundary conditions on real line or a cir-

cle. Such problems are called mixed problems.

Consider integral equation

1
Z

0

k(x� ⇠)q(⇠) d⇠ = f(x), x > 0 (6.1)

extended to the negative half-line by a vector

function e(x). The Fourier transform of Eq.(6.1)

yields a Wiener–Hopf vector functional equation

of the form [1,2]

K(↵)Q+(↵) = F+(↵) +E�(↵). (6.2)

Here, the capital letters denote the Fourier trans-

forms of the functions that are denoted by the

corresponding lowercase letters, and the sub-

scripts indicate the regularity of analytic func-

tions in the upper (plus) or lower (minus) com-

plex half-plane. The regularity property is de-

termined by the supports of the vector function

f(x) and e(x), i.e. by the positive or negative

half-line. A detailed analysis of these equations

and their systems was performed in [5]. A deci-

sive role in solving the Wiener–Hopf functional

equation is played by a factorization of the ma-

trix function K(a) in the form of the product

of two functions:

K(↵) = K�(↵)K+(↵) (6.3)

In the general case, each element of this func-

tion is the sum of a polynomial component and

the Fourier transforms of integrable functions.

Here, K+(↵) is regular in the upper half-plane,

where its determinant has no zeros. The matrix

function K�(↵) has the same property in the

lower half-plane. A technique for solving the

functional equation or its various modifications

was described in [2,5] and is not presented here.

Note that the integral equations (6.1) de-

fined on finite intervals rather than on a half-line

are more important in applications [6, 7]. By

applying functional equation Eqs.(6.2), (6.1) de-

fined on finite intervals are reduced to Fredholm

integral equations of the second kind.
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3. The differential factorization method re-

cently developed at Kuban State University [3,4]

is intended for obtaining an integral representa-

tion of solutions to systems of partial differential

equations with constant coefficients in domains

of complex geometry. The method is designed

primarily for seismology problems.

The following principles of topological alge-

bra underline the method. The domain of the

boundary value problem in question is viewed

as a topological manifold with boundary. An

automorphism, i.e. a topological mapping of

this manifold into itself generates transforma-

tion groups that are isomorphic to some groups

of nonsingular matrices. The latter generate

representations of these groups described in the

general case by composite special functions. The

partial differential expression in the statement

of the boundary value problem is treated as a

differentiable mapping to the manifold of a vec-

tor field defined on the same manifold. This

mapping leads to a functional equation that dif-

fers from (6.2). To ensure an automorphism, the

functional equation has to be examined by the

factorization method. When the special func-

tions generated by the automorphism are invari-

ant under the differentiable mapping, the func-

tional equation is especially easy to study, since

the boundary conditions are globally stated on

coordinate surfaces. In the general case, to en-

sure an automorphism, we have to use local

coordinates and apply a topological partition of

unity.

4. Various versions of applying the factor-

ization method to boundary value problems in

various statements can be found in [3, 4] (see

also the references therein). As a result of these

studies, algorithms were developed for apply-

ing the differential factorization method to the

study and solution of boundary value problems

involving systems of partial differential equa-

tions with constant coefficients. Below, a new

algorithm is demonstrated as applied to a rather

general boundary value problem.

Consider a fairly general boundary value

problem for a system of P partial differential

equations of an arbitrary order with constant

coefficients written in operator form in a convex

three-dimensional domain ⌦:

K(@x1, @x2, @x3)'

=

M

X

m=1

N

X

n=1

K

X

k=1

P

X

p=1

A
spmnk

'
p,

(m)
x

1

(n)
x

2

(k)
x

3

= 0,

(6.4)

s = 1, 2, . . . , P, A
sqmnk

= const,

' = {'1,'2, . . . ,'P

}.
' = {'

s

} , ' (x) = ' (x1, x2, x3) ,

x = {x1, x2, x3} , x 2 ⌦.
On the boundary @⌦ we set the boundary con-

ditions.

R(@x1, @x2, @x3)'

=

M

1

X

m=1

N

1

X

n=1

K

1

X

k=1

P

X

p=1

B
spmnk

'
p,

(m)
x

1

(n)
x

2

(k)
x

3

= f
s

,

(6.5)

s = 1, 2, . . . , s0 < P, x 2 @⌦,

M1 < M, N1, < N, K1 < K.

Note that, like in the integral factorization

method described above, in the differential fac-

torization method, the boundary value problem

is solved exactly if ⌦ is a half-space. If ⌦ is

a convex domain, the problem is reduced to a

system of normally solvable pseudodifferential

equations.

To give a systematic description of the dif-

ferential factorization method, we divide it into

several steps.

4.1. Reduction of the differential equa-
tion to a functional equation by applying
the Fourier transform.

The three-dimensional Fourier transform

'
n

(↵) =

ZZZ

⌦

'
n

(x) eih↵xidx ⌘ F'
n

,

'
m

= F'
m

.

is applied to the system to reduce it to a func-

tional equation of the form

K(↵)' =

ZZ

@⌦

!,

K (↵) ⌘ �K (�i↵1,�i↵2,�i↵3)

= kk
nm

(↵)k . (6.6)

55



Babeshko V. A., Evdokimova O. V., Babeshko O. M.

Here, K(↵) is a polynomial matrix function of

order P .

The components of the vector of exterior

forms ! are two-dimensional functions of the

form

! = {!
s

} , s = 1, 2, . . . , P,

!
s

= P12s dx1⇤ dx2
+ P13s dx1⇤ dx3 + P23s dx2⇤ dx3. (6.7)

The exterior-form operations are defined as

dx1⇤ dx2 = dx11 dx
2
2 � dx21 dx

1
2,

dx1⇤ dx3 = dx11 dx
3
2 � dx31 dx

1
2,

dx2⇤ dx3 = dx21 dx
3
2 � dx31 dx

2
2.

Here, we introduced vectors of an arbitrary co-

ordinate system lying in the coverings of the

tangent bundle of the body surface. In a Carte-

sian coordinate system, we used the following

notation for the tangent vectors of an arbitrary

element of a covering:

x1 =
�

x11, x
2
1, x

3
1

 

,

x2 =
�

x12, x
2
2, x

3
2

 

.

The coefficients of the exterior forms are given

by

P12s =

M

X

m=1

N

X

n=1

K

X

k=1

P

X

p=1

A
spmnk

(�i↵1)
m

· (�i↵2)
n

k

X

p

3

=1

(�i↵3)
p

3

�1 '
p

(k�p

3

)
x

3

eih↵xi,

P13s = �
M

X

m=1

N

X

n=1

K

X

k=1

P

X

p=1

A
spmnk

(

(�i↵1)
m

· (�i↵3)
k

n

X

p

2

=1

(�i↵2)
p

2

�1 '
p

(n�p

2

)
x

2

eih↵xi

� (�i↵1)
m

n

X

p

2

=1

k

X

p

3

=1

(�i↵2)
p

2

�1
(�i↵3)

p

3

�1

· @

@x3

⇣

'(n�p

2

),
x

2

(k�p

3

)
x

3

eih↵xi
⌘

)

,

P23s =

M

X

m=1

N

X

n=1

K

X

k=1

P

X

p=1

A
spmnk

(

(�i↵2)
n

· (�i↵3)
k

m

X

s

1

=1

(�i↵1)
(s

1

�1) '
p

(m�s

1

)
x

1

eih↵xi

+ (�i↵2)
n

m

X

s

1

=1

k

X

p

3

=1

(�i↵1)
(s

1

�1)
(�i↵3)

(p
3

�1)

· @

@x3

⇣

'
p

(m�s

1

),
x

1

(k�p

3

)
x

3

eih↵xi
⌘

+ (�i↵3)
k

m

X

s

1

=1

n

X

s

2

=1

(�i↵1)
(s

1

�1)
(�i↵2)

(s
2

�1)

· @

@x2

⇣

'
p

(m�s

1

),
x

1

(n�s

2

)
x

2

eih↵xi
⌘

+

m

X

s

1

=1

n

X

s

2

=1

k

X

s

3

=1

(�i↵1)
(s

1

�1)
(�i↵2)

(s
2

�1)

· (�i↵3)
(s

3

�1)

· @

@x2

@

@x3

⇣

'
p

(m�s

1

),
x

1

(n�s

2

),
x

2

(k�s

3

)
x

3

eih↵xi
⌘

)

,

(6.8)

h↵xi = ↵1x1 + ↵2x2 + ↵3x3, ' = {'
n

} ,
↵ = {↵1,↵2,↵3} , ' = {'

m

}.
4.2. Fulfillment of given boundary

conditions (6.5).
To achieve this, the solution ' (@⌦) and its

normal derivatives on @⌦ taken from the bound-

ary conditions are introduced into the repre-

sentations of the exterior forms. The tangent

derivatives are not taken into account. The exte-

rior forms contain the solution '
n

and its deriva-

tives on @⌦. The functions or normal deriva-

tives on the boundary are found by fitting and

inverting the nonsingular matrix from boundary

conditions (6.4) and are introduced into the cor-

responding representations of !. The remaining

functions or normal derivatives have to be found

from the pseudodifferential equations obtained

by transformations of the functional equations.

The following steps are to be performed to

determine the remaining unknowns in the rep-

resentation of the solution.

4.3. Factorization of the matrix func-
tion K(↵) in the functional equation.

Let �+ denote a domain containing all

the zeros zv
s+, Im zv

s+ > 0, zv
s� Im zv

s� < 0,

s± = 1, 2, . . . , G± with and with of the determi-

nant K(↵⌫

3) = detK(↵⌫

3) , and let �� denote its
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complement to the entire plane with the bound-

ary � separating the domains. The location of

the contour will be specified later. By using the

results of [8], the matrix function K(↵⌫

3) can be

factorized as

K (↵⌫

3) = K (↵⌫

3 ,�)K
r

(↵⌫

3) . (6.9)

Here, K (↵⌫

3 ,�) is a regular matrix function in

�� and its determinant has no zeros in this

domain. The elements of the matrix function

K
r

(↵⌫

3) are polynomials in ↵⌫

3 and its determi-

nant is independent of ↵⌫

3 . All zeros determinant

K (↵⌫

3) with respect to↵⌫

3 coincide with zeros of

the determinant of K (↵⌫

3 ,�) that lie in �+,

The elements of the matrix function

K�1
(↵⌫

3 ,�) can be represented in integral form.

To derive them, we introduce the adjoint

K⇤
(↵⌫

3) of K(↵⌫

3) by setting

K⇤
(↵⌫

3) = kM
pn

(↵⌫

3)k .

Consider a matrix function K⇤
(↵⌫

3 ,m) of order

P � 1 obtained from K⇤
(↵⌫

3) by deleting the

m row and column and such that zeros ⇠⌫
n

of

its determinant Q (↵⌫

3) = detK (↵⌫

3 ,m) do not

coincide with zv
s+, zv

s�.

The elements of the inverse matrix function

are denoted by

[K⇤
(↵⌫

3 ,m)]

�1
=

�

�Q�1Q
ps

�

� .

Then the elements of the matrix function given

by K�1
(↵⌫

3 ,�), having the form

K�1
�

↵v

3,�
�

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 0

1

.

.

.

S
m1 S

m2 . . . S
mm

. . . S
mN

.

.

.

0 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,

(6.10)

Have an integral representation of the form

S
mp

(↵⌫

3) =
1

2⇡i

I

�⌥

N

X

s=1

0 Q
ps

(u3)Msm

(u3) du3
Q(u3)K(u3)(u3 � ↵⌫

3)

�
✓

1

2

⌥ 1

2

◆

R
mp

(↵⌫

3)

K(↵⌫

3)
, (6.11)

m 6= p,

R
mp

(↵⌫

3)

K(↵⌫

3)
=

Z
mp

(↵⌫

3)

Q(↵⌫

3)K(↵⌫

3)

+

X

n

Z
mp

(⇠⌫
n

)

Q0
(⇠⌫

n

)K(⇠⌫
n

)(⇠⌫
n

� ↵⌫

3)
,

S
mm

(↵⌫

3) = K�1
(↵⌫

3),

↵⌫

3 2 �⌥, Zmp

(↵⌫

3) =

N

X

s=1

0
Q

ps

(↵⌫

3)Msm

(↵⌫

3).

Here �+ is a closed contour such that the domain

�+ contains only the zeros zv
s+, zv

s� and and the

domain �� contains only zeros ⇠⌫
n

. The closed

contour �� encloses a domain containing all

zeros zv
s+, zv

s�, ⇠⌫
n

. This representation implies

that the elements of K

�1
(↵⌫

3 ,�) are rational

functions with their only singularities occurring

at zeros zv
s+, zv

s� and and the term containing

them K�1
(↵⌫

3), is explicitly expressed.

4.4. Reduction of the functional equa-
tion to a system of pseudodifferential
equations.

The contour �� is deformed so that it en-

closes an infinite strip with the real line and still

surrounds the zeros zv
s+, zv

s�, ⇠⌫
n

.

Consider the functional equation on the real

line assuming that it contains no zeros zv
s+, zv

s�.

Otherwise, we have to use the techniques de-

scribed in [6] in order to proceed to a curved

real line. Obviously, the zeros zv
s+ and zv

s� lie

in the upper and lower half-planes, respectively.

In what follows, we use a local system of

Cartesian coordinates x⌫

= {x⌫1 , x⌫2 , x⌫3}, where

the first two components lie in the tangent plane

to the boundary @⌦ and the third component

lies on the outward normal. In each local co-

ordinate system, we perform an operation that

ensures an automorphism of ⌦. To this end, we

perform factorization (6.9) and represent func-

tional equation (6.6) in the form

' = K�1
r

(↵⌫

3)K
�1

(↵⌫

3 ,�)

ZZ

@⌦

!. (6.12)

Applying the inverse three-dimensional Fourier

transform to this functional matrix equation,

we require that the original vector function '
vanish for x⌫3 > 0, i.e. outside ⌦. Dropping

the intermediate rearrangements, we obtain the
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relations

P

X

p=1

ZZ

@⌦

!
p

Z
mp

(z⌫
s�) = 0,

s� = 1, 2, . . . , G�,

Z
mm

(↵⌫

3) = �Q(↵⌫

3).

(6.13)

This system consists of pseudodifferential equa-

tions.

4.5. Derivation of a representation of
the solution to the boundary value prob-
lem.

In view of Section 4.2, assume that system

(6.13) has been solved. Introducing the deter-

mined components into the vector of exterior

forms (6.12) and applying the three-dimensional

Fourier transform to '(↵), we obtain

'(x⌫

) =

1

8⇡3

1
ZZZ

�1

K�1
r

(↵⌫

3)K
�1

(↵⌫

3 ,�)

·
ZZ

@⌦

!e�ih↵⌫
3

x

⌫
3

id↵⌫

1d↵
⌫

2d↵
⌫

3 ,

x⌫ 2 ⌦.
Due to formulas (6.11), the solution can be made

more visual if we evaluate the integral with re-

spect to by using residue theory. As a result,

we have

' (xv

) =

1

4⇡2

Z

�1

1
Z

X

s

e�i

(

↵

v
1

x

v
1

+↵

v
2

x

v
2

)

·


K�1
r

✓

i
@

@xv3

◆

T+
�

↵v

1↵
v

2, z
v

s+

�

e�iz

v
s+x

v
3

�K�1
r

✓

i
@

@xv3

◆

T�
�

↵v

1,↵
v

2, z
v

s�
�

· e�iz

v
s�x

v
3

�

d↵⌫

1 d↵⌫

2 , (6.14)

t
m±
�

↵v

1,↵
v

2, z
v

s±
�

= �
P

X

p=1

ZZ

@⌦±

!
p

Z
mp

(zv
s±)

Q(zv
s±)K

0
(zv

s±)
,

T± = {0, 0, . . . , 0, t
m±, 0, . . . , 0}.

Here, the boundary @⌦ for chosen x⌫3 < 0,

x⌫ 2 ⌦ is divided according to

ZZ

@⌦

! =

ZZ

@⌦
+

! +

ZZ

@⌦�

!,

ZZ

@⌦
+

! exp(�i↵⌫

3x
⌫

3) ! 0, Im↵⌫

3 ! 1,

ZZ

@⌦�

! exp(�i↵⌫

3x
⌫

3) ! 0, Im↵⌫

3 ! �1.

the following rule:

In the case of a half-space or a layered

medium, the pseudodifferential equations in

(6.13) degenerate into algebraic ones. By in-

verting them, the solution is constructed in a

finite form.

The problems considered in [9,10] show that

both factorization methods do not iterate and

supplement each other, providing the possibility

of analyzing at wider circle of problems.

7. The topological methods in block
elements

There is represented the method of research

and boundary problem solution for block struc-

tures. This approach introduces the topological

rendering of block element’s method, developed

in works [1–5]. It makes the use of this method

not only convenient, but it also provides the

prospect of future development with involve-

ment of profoundly developed methods of topol-

ogy and theory of manifolds. Particularly it

proves the possibility of wide variety of block

elements’ carrier forms.

Semianalytic method of block element as op-

posed to just computative, allowed to reveal set

of earlier unknown properties of boundary prob-

lems in block structures. Thus, in works [6, 7]

existence of natural viruses is revealed, in [8]

the possibility of energy confinement and other

process parameters that lead to their abnor-

mal behaviour is discovered. We can continue

with examples [9]. The exposition of topological

method, though it is a repetition of algorithm of

block elements method, brings it nearer to the

new potentials in accordance with use of deep

theoretical developments in topology.

1. Lets believe, that we examine linear

boundary problem for the differential equation

system in partial derivatives for the block struc-

ture, consisting of blocks, which occupy three-

dimensional area ⌦

b

b = 1, 2, . . . , B, whose de-

formable environments have multitype physical

and mechanical characteristics. The blocks con-

tact with each other, one part of their bounds

can be loose. The blocks can be limited and un-

limited, they can occupy as simply connected, so
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multiply connected areas with piecewise-smooth

boundary @⌦
b

.

Lets introduce several topologies. The first

one connects with ⌦

b

areas, occupying the

blocks irrelatively to the boundary problem.

We suppose, that block structure consists of

contact blocks and presents all-in-one, it may

also be multiply connected. Examining block

areas in metric space, lets bring into each of

them topology, induced with open environs �
⌫b

,

⌫ = 1, 2, . . . , ⌫
b

[10, 11]. The block environs can

get crushed or consolidated. The largest open

environ in the block is �
b

= [�
⌫b

.

It is a consolidation of all open environs.

It represents the interior of the block, and its

locking �̄
b

gives the block with bounds. Topo-

logical spaces, constructed in each block, are

subspaces T1b of topological space of the whole

block structure T1. Lets accomplish compacti-

fication of space T1, by adding the environs of

infinitely remote point, if the block structure

consist it.

Lets enter into consideration functions from

the space H
s

in every open space �
⌫b

. Linear

normed space induces topology, for example,

with open functions balls. Lets examine set of

functions of H
s

in every open environ �
⌫b

, as

in a carrier, and construct topological structure,

taking as set the open balls

k'kHs
< ".

Thus the open set of functions ⌥

⌫b

is formed on

every open set �
⌫b

. The totality of open environs

⌥

⌫b

forms in the areas ⌦

⌫b

topological structure

of subspace T2b, which is a part of topological

structure T2, including open sets of all blocks.

According to environs T2 construction the spaces

T1 and are isomorphic.

Since topological space T1 is regular in con-

struction, it with its every subspace allows

partition of unity. Lets perform the unity

partition of compacted topological space T1,

and therefore of every subspace T1b, with non-

intersecting connected open covering, which we

will mark as usual for the sake of brevity as

�
�b

, � = 1, 2, . . . ,�
b

. It shows that in virtue

of isomorphism the partition of space unity T1
involves equivalent partition of space unity T2.

Let’s construct topological manifold M1b in topo-

logical space T1b, for this we will enter local

systems of coordinates, maps and atlas in every

covering �
⌫b

. Their consolidation results mul-

tifold M1. Let’s name open coverings �
�b

as

interiors of manifolds M1b and their closings �̄
�b

as orientable manifolds with edge M1b, after en-

tering of local system of coordinate and tangent

bundle of bounds. We got a totality of oriented

infinitely smooth multifold M1b with edge. In

virtue of isomorphism the functions, forming T2
form also multifold M2 and M2b. We can exam-

ine them as objects of topological space T2, so

as the functions on multifold M1 = [M1b. Let’s

indicate through ⇥ the additional areas ⌦ till

the whole space R3
as ⇥ = R3\⌦, which does

not contain carriers of block structure. Let’s

perform the covering areas ⇥ with open areas

✓
µr

, which may contact with some multifolds

at the place, where their bounds is loose and

which we will name as null multifolds �
�b

. As

a result the covering of the whole space R3
will

be performed with open non-intersecting multi-

folds.

2. Lets enter into consideration a boundary

problem for the system of differential equation

in partial derivative at the area, occupying with

block structure

K
b

(@x1, @x2, @x3)'
b

=

M

X

m=1

N

X

n=1

K

X

k=1

P

X

p=1

Ab

spmnk

'
b

p,

(m)
x

1

(n)
x

2

(k)
x

3

= g
b

(x),

(7.1)

s = 1, 2, . . . , P
b

, Ab

sqmnk

= const,

'
b

= {'
b1,'b2, . . . ,'bP

}, b = 1, 2, . . . , B.

' = {'
s

} , ' (x) = ' (x1, x2, x3) ,

x = {x1, x2, x3} , x 2 ⌦
b

.

The following boundary conditions are set on

the common contacting bounds

R
b

(@x1, @x2, @x3)'
b

+R
d

(@x1, @x2, @x3)'
d

=

M

1

X

m=1

N

1

X

n=1

K

1

X

k=1

P

X

p=1



Bb

spmnk

'
b

p,

(m)
x

1

(n)
x

2

(k)
x

3

+Bd

spmnk

'
d

p,

(m)
x

1

(n)
x

2

(k)
x

3

�

= f
bds

, (7.2)

s = 1, 2, . . . , s
b0 < P, x 2 @⌦

b

\ @⌦
d

,

M1 < M, N1, < N, K1 < K,

b, d = 1, 2, . . . , B.

In the case, if the area ⌦

d

is null area, only

the term with index, b the loose bounds, remains

in the formula under the sign of sum.

The boundary problem studies in spaces

of temperate generalized function H
s

(⌦), de-

scribed [1, 2].
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Let’s introduce in consideration a Cartesian

product of topological space T1 ⇥ T2. Let’s

undergo its mapping concerning the rule: T1
is mapped identically to itself; mapping of T2
is introduced by the form K

b

(@x1, @x2, @x3)'
b

,

which transmits a vector '
b

, from M2b to an

assigned vector g
b

to M2b concerning (7.2).

For solution of a boundary problem it is

necessary to find an image of this mapping.

2.1. Start with a setting of a case, when

the ratios of differential form (7.1) are constant

in every block. Proceeding in a space R3
to

functions from T2, belonging to H
s

(⌦), to topo-

logical dual of Fourier – images, receive the re-

lations, which are called the functional equation

type (7.2),

K
b

(↵)'
b

=

ZZ

@⌦b

!
b

�G
b

(↵),

G
b

(↵) =

ZZZ

⌦

g
b

(x) exp i h↵xi dx1x2x3,

K
b

(↵) ⌘ �K
b

(�i↵1,�i↵2,�i↵3)

= kk
bnm

(↵)k ,

↵x = ↵1x1 + ↵2x2 + ↵3x3, b = 1, 2, . . . , B.

where the symbols of this work are saved. In

process of fulfilled buildings the Stokes’ integral

was used on multifold with edge, which led to

appearing of exterior form !
b

. From developed

functional equations we find vectors represen-

tation '
b

, involving unknown values on blocks’

boundaries. For finding the solutions of bound-

ary values '
b

at conjugated or free boundaries

of blocks’ region @⌦
b

it is necessary to unify

the boundaries of contacts or adjacent coverings

�̄
b

and �̄
d

, or adjacent coverings �̄
d

and

¯✓
d

if a

block has a free boundary. For this purpose a

factor is built – a space topology T1⇥T2, which

fulfills a factor of equivalent block boundaries or

the same, equivalent boundaries of topological

closed-sets, under condition (7.2). Let’s mark,

that in this case in space T1 an uprising of cov-

erings by uniting them by the boundary, and in

T2 space a pseudodifferential equation is formed,

which carries out the union of the covering ele-

ments of this topological space. This condition

is far more complicated than the traditionally

stated examples of factor-spaces in literature

of topology [11], but only after its realization a

factor-topology in our case is formed. A suitable

algorithm of conducting this process is described

in [2]. Let’s suppose that 2 blocks �̄
b

and �̄
d

are in contact. Let’s examine only a part of

boundary of their interaction irrespective to the

contacts with other blocks. Then the procedure,

which describes the building of resolving inter-

actions for solving primary boundary problem,

includes the following actions:

– analyzing the multifold with edge M2b and

M2d in local coordinate axes [10];

– a choice of the most effective curvilinear

coordinate system for fulfillment of automor-

phism [12,13];

– fulfillment of a differential factorization of

matrix-function K
b

(↵) and K
d

(↵) [14];

– computing the Leray residue form [2];

– building of pseudodifferential equations [2];

– extracting from pseudodifferential equa-

tions by the demanded condition (7.2) of inte-

gral equations [2, 13,14];

– the solution of integral equations;

– adding the found solutions into the inte-

gral representation of a solution of boundary

problem

'
b

= F�1K�1
b

(↵)

2

6

4

ZZ

@⌦b

!
b

�G
b

(↵)

3

7

5

;

– operator F�1
of Fourier transforms.

In this case after the enlargement of man-

ifold M1d and M1b by uniting into M1b [M1d,

building of isomorphic manifolds M2b[M2d will

follow.

2.2. The case of variable coefficients in dif-

ferential form (7.1) is different from the case,

which is discussed above, that the covering is

dictated by the features of its coefficients. it

should be as small in size, that analyzing at

it differential form (7.1) could be related to a

category, which has constant coefficients. Than

every such covering becomes the block element,

but which has the coefficients. In this case

at the boundary of such blocks the boundary

conditions interface solutions should be formu-

lated, similarly (7.2), dictated by the demand

of software smoothness of solutions, it is pos-

sible, theirs differential quotients or gradients

and other forms at the boundary. After that,

all actions for such block structure for the given

boundary problem, which are stated in the pre-

vious paragraph.

2.3. In case of nonlinear boundary problem

a research and its solution can be fulfilled by
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using the Newton-Kantorovich’s method [15],

which demands for its realization at each step a

converse of some linear not uniform boundary

problems with variable coefficients, which, it is

shown in previous paragraphs, is feasible for the

method.

Therefore, an offered method can be re-

searched a wide range of boundary problems

from different fields. It should be noticed, that

usage of this method allows building of analyti-

cal representation of boundary problem solution,

and it is of extreme importance, for example, for

analyzing a wave processes and revealing of dif-

ferent irregular conditions in a multiparameter

processes.

Note 1. The simplified schemes of multi-

fold buildings are stated at 2.1 in terms that the

blocks have one map. Without any effort using

this scheme a research can be fulfilled also in

the cases, when there are several maps. In this

case it is necessary to “increase” the quantity of

blocks, putting for each one map. In this case it

is necessary to form additional conditions of the

type (7.2), providing the continuation of solu-

tions from one block to another concerning the

demanding dictating by the boundary problem

conditions of persistence.

Note 2. Application to topological ap-

proach in the method of block element allowed

setting important property of possibility of wide

chose of its carriers which can be absolutely ar-

bitrary open sets. For all these cases exists an

algorithm providing the process of getting the

answer bounding sum.

Note 3. It is perfectly clear that given

block structure can contain different types of

heterogeneity as cracks, inclusions and vesicle.

In his case block elements can be built with the

method of relative (virtual) division in block

structure without crossing border of heterogene-

ity. In the case when three-dimensional block

structure contains deformed blocks of smaller

sizes, for example, plates or shells coupling of

such elements has its own peculiarity and the

algorithm stated above cannot be used.

8. The topological approach in
mechanical conception

The theoretical foundations for prognosis of

seismicity are based on the concept of evalua-

tion of the concentration of stresses from the

mechanical interaction of lithospheric plates sub-

jected to external effects of various natures and

performing a slow drift. There are different ap-

proaches to its implementation in some domes-

tic and foreign studies. However, their features

considerably simplify the problems under con-

sideration and allow application of a very simple

mathematical apparatus. Such an approach as a

whole cannot envelope a tremendous variety of

processes in deep layers of the Earth and on its

surface, as well as the properties of deformed me-

dia, of which lithospheric plates consist, and the

types of faults. We note that the information (in

many aspects relative to the depth properties)

is extremely poor and unknown in some cases.

In connection with this, an approach to model-

ing the processes of the behavior of lithospheric

plates that would make it possible to interact

with the model in a dialog mode as is required

for involving newly revealed information into it

is necessary.

For example, such information can involve

the presence of nonuniformities of lithospheric

plates; the refinement of the types of their faults,

if they are through or of a limited depth; and the

presence of internal cavities and cracks in litho-

spheric plates. The information on the proper-

ties of the contact of lithospheric plates with

the Earth’s upper mantle, asthenosphere, and

questions on the possible effects of the sources

of stresses of all types on lithospheric plates, in-

volving those from the daylight – wind and sed-

imentary, radiation, and electromagnetic ones.

Attempts to take these factors into account,

which were performed in certain approaches, do

not make it possible to perform it as a whole,

which leads to their separation and investiga-

tion of separate problems for each of them. This

leads not only to loss of accuracy but also to loss

of important properties of the behavior of so-

lutions, boundaries, and things associated with

the manifestation of natural viruses [1–3]. The

latter were found only in connection with inves-

tigations of the influence of several factors on

the solutions of boundary problems considered

jointly.

In connection with the aforesaid, the block

element method, which has a topological base [4]

and has been successfully developed and applied

at the Southern Scientific Center of the Russian

Academy of Sciences and at Kuban University,

is the most appropriate for investigation of the

behavior of lithospheric plates. Implementation

of the mechanical concept is demonstrated be-

low by the example of the simplest model of
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lithospheric plates. The mechanical concept of

the evaluation of the seismicity of territories is

based on revealing the stress concentration zones

in lithospheric plates as one more precursor of

seismicity, by which we can judge the possi-

ble consequences of seismic events, the places

of their arrangement, and, in some situations,

their probable arrival times.

1. Let us consider separately the topological

approach in the theory of block structures in the

presence of block elements of various dimensions.

In contrast to block structures with blocks of the

same dimensionality as considered in [4, 5], this

case has its own specifics. It can be investigated

by different approaches. As a rule, these are the

cases in which the three-dimensional deformed

bodies are in contact with two-dimensional ones,

for example, with plates or shells. Coatings

of three-dimensional bodies by the shells, the

presence of technological inclusions from the

plates in three-dimensional bodies, etc., are re-

ferred to such contacts. The coating can be

multilayered. Coatings can be partially cleaved

and contain cracks. Such a situation occurs in

lithospheric plates, which contain faults, both

internal and external. An example of tectonic

faults on the territory of Krasnodar region is

presented. Cracked coatings are also possible in

aviation materials, where the levels of admissible

defects of airplanes, which allow the continua-

tion of their safe service, are determined. In

materials science, theories are developed that

explain the durability of a ground surface of

metals by the presence of the surface tension

modeled by a thin coating. The problems of

studying the durability of such objects, with the

presence of cracks in them, appear in the theory

of nanocoatings.

When studying topologically a block struc-

ture consisting of the above-described two-

dimensional and three-dimensional blocks, two

approaches are possible. The first one in-

volves the priority topological investigation

of each block structure, two-dimensional and

three-dimensional, separately by the method

described in [4–7] allowing for the presence of

all nonuniformities, cracks, and faults. Them

an operation is performed, which is called the

construction of the factor-topology and consists

in identifying the two-dimensional boundary of

three-dimensional block element with the mid-

dle surface of the two-dimensional coating. In

such a manner, we construct the pseudodifferen-

tial equations and the integral equation for the

construction of all boundary conditions of the

boundary problem under consideration.

The second approach consists in the prelim-

inary construction of the factor-topology of two

block elements, the three-dimensional and two-

dimensional ones, with subsequent investigation

of a new topological object, which contains nan-

odimensional components and the same various-

dimensional boundaries. The investigation in

the second way requires correctly taking into

account of all the features of such a topological

object. This is especially referred to construct-

ing the tangential exfoliation of the boundary

and introducing local coordinate systems, the

maps, and the atlas of the manifold.

2. As an example, let us consider the bound-

ary problem for a wafer as the simplest model

giving a various-dimensional block structure

having contact with a three-dimensional sub-

strate. Let us accept a plate consisting of differ-

ent types of horizontally contacting fragments,

which can also be cracked, and situated in the

deformed half-space. In particular, this is the

simplest model of lithospheric plates modeled

by Kirchhoff plates. It consists of the parts of

horizontally oriented plate-blocks and contains

arbitrary geometric faults. Currently, the ex-

perimental data relative to the motions of litho-

spheric plates are obtained using high-precision

GPS/GLONASS receivers [8]. Based on this

model, we will consider such a plate with faults

as a two-dimensional manifold with an edge. Let

us denote the regions occupied by the plate as

⌦. Let us divide the plate into blocks starting

from the requirement of retaining the uniformity

and constancy of properties in each block. In

addition, let us perform the division into the

blocks over the faults or cracks even if the crack

intersects the single-type block. Let B be the

number of blocks obtained after such division.

In this case, we have ⌦ = [⌦
b

, b = 1, 2, . . . , B.

The boundaries of blocks @⌦
b

will be of different

types. A part @⌦
b1 of each boundary @⌦

b

can

provide a rigid contact with a neighboring block,

another part @⌦
b2 can be free of stresses and

bends, and the third part @⌦
b3 can be the crack

edge, i.e. in the general case, @⌦
b

= [@⌦
br

,

r = 1, 2, 3.
Let us retain the notations of motions con-

ventional in plate theory u = {u1, u2, u3} and

mechanical parameters [9, 10]. Below, u1, u2,
are the motions of plate points along the hori-

zontal direction of the middle surface and u3 is

the motion along the normal to it. In this case,
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the expression for the differential component of

the operator

R
b

(@x1, @x2)u
b

� "5bgb = "5btb.

Has the form

R
b

(@x1, @x2)u
b

=

�

�

�

�

�

�

⇢11 ⇢12 0

⇢21 ⇢22 0

0 0 ⇢33

�

�

�

�

�

�

.

Here,

⇢11 =

✓

@2

@x21
+ "1b

@2

@x22
+ "4b

◆

u1b,

⇢22 =

✓

@2

@x22
+ "1b

@2

@x21
+ "4b

◆

u2b,

⇢33 =

 

"3b

✓

@4

@x41
+ 2

@2

@x21

@2

@x22

+

@4

@x42

◆

� "4b

!

u3b,

⇢12 =

✓

"2b
@2

@x1@x2

◆

u2b,

⇢21 =

✓

"2b
@2

@x1@x2

◆

u1b,

R
b

(�i↵1,�i↵2)U
b

= �

�

�

�

�

�

�

⇠11 ⇠12 0

⇠21 ⇠22 0

0 0 ⇠33

�

�

�

�

�

�

. (8.1)

Here,

⇠11 = (↵2
1 + "1b↵

2
2 � "4b)U1b,

⇠22 = (↵2
2 + "1b↵

2
1 � "4b)U2b,

⇠33 = �("3b(↵
2
1 + ↵2

2)
2 � "4b)U3b,

⇠12 = "2b↵1↵2U2b, ⇠21 = "2b↵1↵2U1b,

U = F2u, G = F2g, b = 1, 2, . . . , B.

Here,

"1b =
1

2

(1� ⌫
b

), "2b =
1

2

(1 + ⌫
b

),

"3b =
h2
b

12

,

"4b = !2⇢
b

1� ⌫2
b

E
b

, "5b =
1� ⌫2

b

E
b

h
b

, (8.2)

g1b = µ
b

✓

du1b
dx3

+

du3b
dx1

◆

,

g2b = µ
b

✓

du2b
dx3

+

du3b
dx2

◆

,

g3b = �
b

✓

du1b
dx1

+

du2b
dx2

+

du3b
dx3

◆

+ 2µ
b

du3b
dx3

,

x3 = 0.

Notations are accepted for the plates: �
and µ are the Lamé parameters, ⌫ is the Pois-

son coefficient, E is the Young modulus, h
is the thickness, ⇢ is the density, ! is the

oscillation frequency, g
b

= {g1b, g2b, g3b} and

t
b

= {t1b, t2b, t3b} are the vectors of contact

stresses and external powers acting along axis

x3 in region ⌦

b

, and F2 ⌘ F2(↵1,↵2) is the

two-dimensional Fourier transform operator.

Variable boundary conditions are dictated

by the type of the parts of boundaries of each

block. For example, with the accepted nota-

tions, the boundary conditions for the case of

hinged opening in the contact zone, i.e., free

rotation at the boundary around axis x1, has

the form

M = �D

✓

@2u3
@x21

+ ⌫
@2u3
@x22

◆

= 0,

D =

Eh2

12(1� ⌫2)
.

(8.3)

For the case when the plate edges are al-

lowed to shift freely along axis x3, the boundary

condition is

Q = �D

✓

@3u3
@x32

+ (2� ⌫)
@3u3
@x21@x2

◆

= 0.

(8.4)

In the case of rigid fixing, we should require

that the shifts in axial directions would equal

zero:

u1 = 0, u2 = 0, u3 = 0. (8.5)

To forbid the turn of the middle plane

around axis x1, we should require fulfillment

of the condition

@u3
@x2

= 0. (8.6)
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Expressions for the normal and tangential

components of stresses at the boundary are

given by expressions, respectively,

N
x

2

=

E

1� ⌫2

✓

@u2
@x2

+ ⌫
@u1
@x1

◆

,

T
x

1

x

2

=

E

2(1 + ⌫)

✓

@u2
@x1

+

@u1
@x2

◆

.

As the deformed base of the substrate, which

is described by boundary problem (8.1) with

coating plates arranged on it, we can accept

different models. These can be deformed half-

space, the layer, and the multilayered half-space

including the anisotropic one, viscoelastic me-

dia. In all listed cases, the ratios between the

stresses on the surface of the layered medium

g
kb

, k = 1, 2, 3 and motions u
k

, k = 1, 2, 3 have

form (8.2) with properties

u(x1, x2, x3) =
1

4⇡2

1
Z

�1

Z

K(↵1,↵2, x3)

·G(↵1,↵2)e
�i h↵,xi

d↵1 d↵2, (8.7)

h↵, xi = ↵1x1 + ↵2x2,

K = kK
mn

k , m, n = 1, 2, 3,

K(↵1,↵2, 0) = O(A�1
),

A =

q

↵2
1 + ↵2

2 ! 1.

K
ks

(↵1,↵2, x3) are the analytical functions of

two complex variables ↵
k

, particularly, mero-

morphic ones; their numerous parameters are

presented in [11,12]. These relations are called

the dominant functions.

If equations that describe the behavior of

the base medium are known, the elements of

the function-matrix K(↵1,↵2, 0) can be calcu-

lated. If there are no such equations, influence

functions can be obtained experimentally.

3. As an example, let us consider the scalar

case of vertical oscillations of the plate. In this

case, functional equation (8.1) of the boundary

problem for this case, which s presented for the

above-described plate as for the manifold with

the edge, is split for each block and given by

relationship [13]

R
b

(�i↵1b,�i↵2b)U3b

⌘ ("3b(↵
2
1b + ↵2

2b)
2 � "4b)U3b

= �
Z

@⌦b

!
b

+ "5bF2(g3b + t3b), (8.8)

b = 1, 2, . . . , B.

Here, !
b

is the external form that participates

in the representation and has the form

!
b

= "3be
ih↵,xi

(

�


@3u3b
@x32

�i↵2
@2u3b
@x22

�↵2
2
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+ i↵3
2u3b + 2

@3u3b
@x21@x2

� 2i↵2
@2u3b
@x21

�

dx1

+



@3u3b
@x31

�i↵1
@2u3b
@x21

�↵2
1
@u3b
@x1

+i↵3
1u3b

�

dx2

)

,

!
b

= "3be
ih↵,xi

n

�
h

i↵2MD�1 �QD�1

� (↵2
2 + ⌫↵2

1)
@u3r
@xr2

+ i↵2
⇥

↵2
2 + (2� ⌫)↵2

1

⇤

u3r
io

dx1.

As is mentioned above, the block boundary can

contact differently with neighboring blocks or

be free. This property should be introduced

into the presentation of the pseudodifferential

equation.

To construct it, the roots of the coefficient

of functional equation (8.8) are found, and then

the automorphism requirement id fulfilled as ap-

plied to the functional equation, and the Leray

residue form is calculated.

Let us admit that one of the parts of the

boundary of block ⌦

br

is a straight line. In this

case, the group of pseudodifferential equations

constructed based on this part takes the form

F�1
1 (⇠r1)

*

�
Z

@⌦br

⇢

i↵21�D
�1M

r

�D�1Q
r

� (↵2
21� + ⌫↵2

1)
@u3r
@xr2

+ i↵21�
⇥

↵2
21� + (2� ⌫)↵2

1

⇤

u3r

�

ei↵
r
1

x

r
1

dxr1

+

Z

@⌦b\@⌦br

!
b

+ "5bF2(g3b + t3b)

+

= 0,

↵2 = ↵21�, ⇠r1 2 @⌦
br

,
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F�1
1 (⇠r1)

*

�
Z

@⌦br

n

i↵22�D
�1M

r

�D�1Q
r

� (↵2
22� + ⌫↵2

1)
@u3r
@xr2

+ i↵22�
⇥

↵2
22� + (2� ⌫)↵2

1

⇤

u3r
o

ei↵
r
1

x

r
1

dxr1

+

Z

@⌦b\@⌦br

!
b

+ "5bF2(g3b + t3b)

+

= 0,

↵2 = ↵22�, ⇠r1 2 @⌦
br

.

Here, F�1
1 are the backward operators to the

Fourier one-dimensional representations. It

should be accepted in integrands that

↵21� = �i

r

(↵r

1)
2 �

q

"4b
/"3b,

↵22� = �i

r

(↵r

1)
2
+

q

"4b
/"3b

respectively. If the boundary is not straight, we

can consider that a small zone of this boundary

is considered. Other groups of pseudodifferen-

tial equations for other segments of the bound-

ary are shaped similarly. The property of the

main operator to contain boundary conditions

of all types, which the plate can have during

vertical vibrations and for which the analytical

expressions are given by relations (8.3)–(8.6),

is a characteristic property. Writing all pseu-

dodifferential equations for each segment of the

boundary and for each block, introducing the

corresponding boundary conditions into them,

and solving the integral equations derived from

pseudodifferential equations, we derive the rep-

resentation of solutions in each plane block from

relations.

u3b = F�1
2 [R

b

(�i↵1b,�i↵2b)]
�1

·
*

�
Z

@⌦b

!
b

+ "5bF2(g3b + t3b)

+

. (8.9)

The found representation u3b (8.9) of the

two-dimensional block structure is identical to

u3b (8.7) at x3 = 0 of the three-dimensional

block structure, and as a result, the integral

equation for determining the contact stresses

between the coating and the substrate, which

carries information on the stress concentration

in the lithospheric plate from vertical effects, is

obtained. The presented scalar scale is trans-

ferred to the vector case, which is described by

the first two equations in (8.1), without any diffi-

culty. In total, with the solution of the complete

boundary problem for set of equations (8.1), the

possibility appears to evaluate the stress con-

centration in the models of lithospheric plates

based on the monitoring information involving

the GPS/GLONASS receivers. A more exact

model of the territory is obtained with the use of

deformed three-dimensional lithospheric plates

arranged horizontally on a deformed base and

with applying the approaches described in [15].

9. About hidden defects in the bodies
with coverings

The method of hidden flaws in covers in-

vestigation is being developed, a resumptive

topologic approach in dynamic boundary prob-

lems [1, 2] in case of statistic problems. The

tense state of strain of block structure is being

investigated, that consists of aflat located poly-

typic blocks contacting at the borders between

themselves. This block structure is located

on the surface of three-dimensional linearly de-

formable substrate. The considered block struc-

tures are under the vertical static external ac-

tion. This state is typical for lithosphere plates

and also nanomaterials and articles made of

structural materials. The investigation of the

tense state of strain of lithosphere plates state

in static conditions allows to receive information

about the territory seismicity character. The

topologic approach makes it possible to consider

simultaneously bodies with covers having hidden

flaws unobserved by sight as opposed to those,

for example, considered in [3]. By the example of

block structure consisting of two polytypic con-

tact planes on the three-dimensional deformable

substrate the case of hidden flaw existence was

considered that preceded the demolition in this

zone. Let us note that it is impossible to get

the static case by solving the analogical bound-

ary problem concerning harmonic oscillations

using simple passage to the limit to vanishing

oscillation frequency [1]. Static problems for

covers with flaws can disclose seismicity growth

in heightened danger of earthquakes territories

and also promotes, on all due conditions, the

passing of “quiet earthquakes”. The detailed

analysis of the approach was made for signifi-

cant in supplements case of two cover fragments

in the form of half planes contact that occur
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the most in heightened danger of earthquakes

territories.

1. Without going into details of solving of

topologic boundary problems and factorization

approaches stated in [1,2, 4–9] let us show the

determining equations for block structure con-

sisting of two-dimensional cover fragments on

three-dimensional substrate retaining the de-

scription of works [1,2]. The Kirchhoff equation

for some block bcover b = 1, 2, . . . , B occupying

the area ⌦

b

with boundary @⌦
b

during vertical

static actions by the help of stresses t3b has the

form

R
b

(@x1, @x2)u3b � "5b(g3b + t3b)

⌘ "3b

✓

@4

@x41
+ 2

@2

@x21

@2

@x22
+

@4

@x42

◆

u3b

� "5b(g3b + t3b) = 0,

R
b

(@x1, @x2)u3b � "5bg3b = "5bt3b,

R
b

( � i↵1,�i↵2)U3b ⌘ R
b

(�i↵1,�i↵2)U3b

⌘ "3b(↵
2
1 + ↵2

2)
2U3b,

U3b = F2u3b, G3b = F2g3b, b = 1, 2, . . . , B

"1b =
1

2

(1� ⌫
b

), "2b =
1

2

(1 + ⌫
b

),

"3b =
h2
b

12

, "5b =
1� ⌫2

b

E
b

h
b

Here the plates have the following markings:

⌫ – Poisson’s ratio, E – Young’s modulus, h –

thickness, g3b, t3b – contact voltage and exter-

nal pressure value that action longwise axis x3
in area ⌦

b

, and F2 ⌘ F2(↵1,↵2), F1 ⌘ F1(↵1)

are accordingly the two-dimensional and one-

dimensional Fourier-transform operator.

In the local coordinate system x1x2x3 with

the plane x1x2 that coincides with middle plate

flatness, axis ox3 directed via the normal line

to plate by the axis ox1 directed tangentially

to the break boundary by the axis ox2 – via

the normal to it’s boundary, the end conditions

can be assigned by any two of the four following

correlations, and namely, in the form of vertical

dislocation on the boundary

u3b = f1(@⌦
b

) (9.1)

middle plate rotating round the axis x1,

@u3b
@x2

= f2(@⌦
b

) (9.2)

bending moment on the boundary

M = �D

✓

@2u3b
@x21

+ ⌫
@2u3b
@x22

◆

= f3b(@⌦b

),

D =

Eh2

12(1� ⌫2)
(9.3)

intersecting force on the boundary

Q = �D

✓

@3u3b
@x32

+ (2� ⌫)
@3u3b
@x21@x2

◆

= f4b(@⌦b

). (9.4)

The correlations between the exertions on the

stratified medium surface g
kb

, k = 1, 2, 3 and

between the dislocations u
k

, k = 1, 2, 3 have the

following form

u3(x1, x2, x3) =
1

4⇡2

1
Z

�1

Z

K(↵1,↵2, x3)

·G(↵1,↵2)e
�ih↵,xi

d↵1 d↵2, (9.5)

h↵, xi = ↵1x1 + ↵2x2,

K(↵1,↵2, 0) = O(A�1
), A =

q

↵2
1 + ↵2

2 ! 1.

K (↵1,↵2, x3) – is an analytical function of two

complex variables ,and particularly, meromor-

phic function, it’s numerous examples are given

in [10–13].

In case of two plates contacting longwise the

axis let us give the parameters of the left an

index , and of the right an index. Then the

functional equation of the boundary problem

for the left half plane can be represented in the

following form

R
�

(�i↵1,�i↵2)U3� ⌘ "3�(↵
2
1 + ↵2

2)
2U3�

= �
Z

@⌦�

!
�

+ S3�(↵1,↵2), (9.6)

S3�(↵1,↵2) = F2(↵1,↵2)(g3� + t3�).

Analogously for the right half plane

R
r

(�i↵1,�i↵2)U3r ⌘ "3r(↵
2
1 + ↵2

2)
2U3r

= �
Z

@⌦r

!
r

+S3r(↵1,↵2),

S3r(↵1m↵2) = F2(↵1,↵2)(g3r + t3r). (9.7)
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Here !
b

– is an external form participating in

the representation and having the following form

!
b

= "3be
ih↵,xi

(

�


@3u3b
@x32

�i↵2
@2u3b
@x22

�↵2
2
@u3b
@x2

+ i↵3
2u3b + 2

@3u3b
@x21@x2

� 2i↵2
@2u3b
@x21

�

dx1

+



@3u3b
@x31

� i↵1
@2u3b
@x21

� ↵2
1
@u3b
@x1

+ i↵3
1u3b

�

dx2

)

.

Having accepted the designations of works [1,2],

having calculated residue Leray forms, includ-

ing twofold forms, pseudodifferential equations

of boundary problem taking into account the

accepted designations we can represent for the

left half plane in the following form

F�1
1 (⇠�1 )

*

�
Z

@⌦�

⇢

i↵2�D
�1
�

M
�

�D�1
�

Q
�

� (↵2
2� + ⌫

�

↵2
1)
@u3�
@x2

+ i↵2�
⇥

↵2
2� + (2� ⌫

�

)↵2
1

⇤

u3�

�

ei↵1

x

1

dx1

+ "5�S3�(↵1,↵2�)

+

= 0,

↵2� = �i
q

↵2
1, ⇠�1 2 @⌦

�

,

F�1
1 (⇠�1 )

⌧

�
Z

@⌦�

⇢

iD�1
�

M
�

� 2↵2�
@u3�
@x2

+ i
⇥

3↵2
2� + 2(2� ⌫

�

)↵2
1

⇤

u3�

�

ei↵1

x

1

dx1

+ "5�S
0
3�(↵1,↵2�)

+

= 0,

⇠�1 2 @⌦
�

,

Accordingly for the right

F�1
1 (⇠r1)

*

�
Z

@⌦r

⇢

i↵2+D
�1
r

M
r

�D�1
r

Q
r

� (↵2
2+ + ⌫

r

↵2
1)
@u3r
@x2

+ i↵2+
⇥

↵2
2+ + (2� ⌫

r

)↵2
1

⇤

u3r

�

ei↵1

x

1

dx1

+ "5rS3r(↵1,↵2+)

+

= 0,

↵2+ = i
q

↵2
1, ⇠r1 2 @⌦

r

,

F�1
1 (⇠r1)

*

�
Z

@⌦r

⇢

iD�1
r

M
r

� 2↵2+
@u3r
@x2

+ i
⇥

3↵2
2+ + 2(2� ⌫

r

)↵2
1

⇤

u3r

�

ei↵1

x

1

dx1

+ "5rS
0
3r(↵1,↵2+)

+

= 0,

⇠r1 2 @⌦
r

.

The derivative is calculated with the parameter.

Let us introduce the following notation system

basing on (9.1)–(9.4)

Y
�

= {y1�, y2�} , Z
�

= {z1�, z2�} ,

Y
r

= {y1r, y2r} , Z
r

= {z1r, z2r} ,

F1g = F1(↵1)g, F2g = F2(↵1,↵2)g,

y1� = D�1
�

F1M
�

, y2� = D�1
�

F1Q
�

,

y1r = D�1
r

F1Mr

, y2r = D�1
r

F1Qr

,

z1� = F1
@u

�

@x�2
, z2� = F1u

�

,

z1r = F1
@u

r

@xr2
, z2r = F1ur,

K
�

= {k1�, k2�} , K
r

= {k1r, k2r} ,

k1� = "5�F2(↵1,↵21�)(g
�

+ t
�

)

= "5�S3�(↵1,↵2�),

k2� = "5�S
0
3�(↵1,↵2�),

k1r = "5rF2(↵1,↵21+)(gr+t
r

) = "5rS3r(↵1,↵2+),

k2r = "5rS
0
3r(↵1,↵2+).

As a result the pseudodifferential equations for

this case can be rewrote in the form of algebraic

equation system

� i↵2�y1� + y2� + (↵2
2� + ⌫

�

↵2
1)z1�

� i↵2�
⇥

↵2
2� + (2� ⌫

�

)↵2
1

⇤

z2� + k1� = 0,

� iy1� + 2↵2�z1�

� i
⇥

3↵2
2� + 2(2� ⌫

�

)↵2
1

⇤

z2� + k2� = 0,
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� i↵2+y1r + y2r + (↵2
2+ + ⌫

r

↵2
1)z1r

� i↵2+
⇥

↵2
2+ + (2� ⌫

r

)↵2
1

⇤

z2r + k1r = 0,

� iy1r + 2↵2+z1r

� i
⇥

3↵2
2+ + 2(2� ⌫

r

)↵2
1

⇤

z2r + k2r = 0.

In the matrix form the system has the following

form

A
�

Y
�

+B
�

Z
�

+K
�

= 0,

A
r

Y
r

+B
r

Z
r

+K
r

= 0,

A� =

�

�

�

�

a11� a12�
a21� a22�

�

�

�

�

, B� =

�

�

�

�

b11� b12�
b21� b22�

�

�

�

�

,

A
r

=

�

�

�

�

a11r a12r
a21r a22r

�

�

�

�

, B
r

=

�

�

�

�

b11r b12r
b21r b22r

�

�

�

�

,

a11� = �i↵2�, a12� = 1, a21� = �i,

a22� = 0, b11� = (↵2
2� + ⌫

�

↵2
1),

b12� = �i↵2�
⇥

↵2
2� + (2� ⌫

�

)↵2
1

⇤

,

b21� = 2↵2�,

b22� = �i
⇥

3↵2
2� + 2(2� ⌫

�

)↵2
1

⇤

,

a11r = �i↵2+, a12r = 1, a21r = �i,

a22r = 0, b11r = (↵2
2+ + ⌫

r

↵2
1),

b12r = �i↵2+
⇥

↵2
2+ + (2� ⌫

r

)↵2
1

⇤

,

b21r = 2↵2+,

b22r = �i
⇥

3↵2
2+ + 2(2� ⌫

r

)↵2
1

⇤

.

(9.8)

Having solved these pseudodifferential equa-

tions for the chosen boundary problem and hav-

ing inserted the found variables into the external

forms in (9.6), (9.7), Fourier transform solution

for plates can be represented for the left half

plane b = � and for the right b = r in a one-type

form

U3b = [R
b

(�i↵1b,�i↵2b)]
�1

·
*

�
Z

@⌦b

!
b

+ "5bF2(g3b + t3b)

+

.

The further utilizing of this representation for

coupling with the substrate is described in [1,2]

and applied below. Let us note that this in-

vestigation demands using different variants of

integral factorization method [14,15].

2. The topological method of boundary

problems resolution has an important advan-

tage that is the coverage of all boundary prob-

lems types assumed by the considered boundary

problem and also allows to investigate them in

a one-type way. The latter allows comparing

the resolutions of these problems visually, this

is showed below. Let us consider some examples

of cracked surfaces. In case of absence of defect

exertion and dislocation of crack banks have to

coincide. Let us study the case when the flaw

represents free from bank exertion cracks, in

other words. Then from the system (9.8) we

found

Z
�

= �B�1
�

K
�

, Z
r

= �B�1
r

K
r

. (9.9)

Let us consider the case when Z
�

= Z
r

,

y1� = y1r = 0. Then the resolution comes

from the correlations

Y
�r

= �C�1
�r

(B�1
�

K
�

�B�1
r

K
r

),

C
�

= B�1
�

A
�

, C
r

= B�1
r

A
r

,

C
�r =

�

�

�

�

c12� �c12r
c22� �c22r

�

�

�

�

,

Y
�r

= {y2�, y2r} , Y
�

= {0, y2�} ,
Y

r

= {0, y2r} ,
Z
�

= �B�1
�

A
�

Y
�

�B�1
�

K
�

.

(9.10)

This case can be referred to presence of hidden

flaw category unobserved by sight because dis-

locations and rotation angles of plates on the

flaw are continued. Nevertheless, there exists

the violation connectivity for the components

of the stress, that is indicative of presence of

errors (faults). Such examples of different types

of errors, cracks, fractures can be continued. To

understand the possible reason for destruction of

the coating in the place of study, it’s worthwhile

to study the case of absence of the error and

to define stressedly-deformed state in this case.

Then should be accepted Y
�

= Y
r

, Z
�

= Z
r

.

As a result we have from (9.8)

Y
�

= (A�1
�

B
�

�A�1
r

B
r

)

�1

· (A�1
�

K
�

�A�1
r

K
r

),

Z
�

= (B�1
�

A
�

�B�1
r A

r

)

�1

· (B�1
�

K
�

�B�1
r

K
r

). (9.11)

Thus, the given examples show, that the

topological method for the given type of

boundary-value problems is very opportune. It

allows the single-type research for the all-types

problems both with and without errors. Having

extracted all the pseudodifferential equations for

each part of the limit and for each block, having
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included into them the corresponding boundary

conditions, having solved the extracted from the

pseudodifferential equations integral equations,

we’ll have from (9.6), (9.7) the representation

of solutions in every block, that represents the

plane in the form of

u3� = F�1
2 [R

�

(�i↵1,�i↵2)]
�1

·
*

�
Z

@⌦�

!
�

+ "5�F2(g
�

+ t
�

)

+

,

u3r = F�1
2 [R

r

(�i↵1,�i↵2)]
�1

·
*

�
Z

@⌦r

!
r

+ "5rF2(gr + t
r

)

+

. (9.12)

3. Let’s take the correlation (9.5), when in

the form of

P
�

u3(x1, x2, 0) + P
r

u3(x1, x2, 0)

= F�1
2 K(↵1,↵2, 0)

· [G
�

(↵1,↵2) +G
r

(↵1,↵2)] , (9.13)

G
�

(↵1,↵2) = F2P
�

g(x1, x2),

G
r

(↵1,↵2) = F2Pr

g(x1, x2).

Here P
�

, P
r

the projectors on the left and the

right half-planes, which are the carriers of the

corresponding panels. Inserting the correlation

(9.12) into the left sides (9.13) and applying the

Fourier transformations, we get the correlation

in the form of

[R
�

(�i↵1,�i↵2)]
�1

·
*

�
Z

@⌦�

!
�

+ "5�(G�

+ T
�

)

+

+ [R
r

(�i↵1,�i↵2)]
�1

·
*

�
Z

@⌦r

!
r

+ "5r(Gr

+ T
r

)

+

�K(↵1,↵2, 0) [G
�

(↵1,↵2) +G
r

(↵1,↵2)] = 0,

T
�

= F2t
�

(x1, x2), T
r

= F2tr(x1, x2).

The functions G
�

(↵1,↵2), G
r

(↵1,↵2), which

serve as the Fourier transformations of the func-

tions, with the bearers in the half-planes, serve

as the regular functions of operation factors ↵2

with the fixed ↵1 in the left and the right half-

planes pro tanto. In this connection we can

designate

G
�

(↵1,↵2) = G�(↵1,↵2),

G
r

(↵1,↵2) = G+(↵1,↵2).

Inserting these designations into the previous

correlation, we get to the Wiener–Hopf func-

tional equation of the following form

MG+ = G� + V,

M = K1K
�1
2 , K1 = R�1

r

"5r �K,

K2 = K �R�1
�

"5�, (9.14)

V = K�1
2

 

R�1
�

Z

@⌦�

!
�

+R�1
r

Z

@⌦r

!
r

�R�1
�

"
�

T
�

�R�1
r

"
r

T
r

!

.

Solution of the functional equation (9.14) is

not difficult. The methods of constructing of

it’s exact or approximate solutions we can find

in works [10–15]. Taking into account, that with

↵2 ! ±1 occurs the correlation M ! const,

the solution may be written in the form of

G+ = M�1
+

�

M�1
� V

 +
,

G� = �M�
�

M�1
� V

 �
,

M = M+M�,

M�1
� V =

�

M�1
� V

 +
+

�

M�1
� V

 �
.

Here the designation of work [11] is accepted.

The so-organized solutions have the follow-

ing structure

G+(↵1,↵2) = C1+(↵1,↵2)G+(↵1,↵2+)

+ C2+(↵1,↵2)G�(↵1,↵2�)

+ C3+(↵1,↵2)G
0
+(↵1,↵2+)

+ C4+(↵1,↵2)G
0
�(↵1,↵2�)

+ C5+(↵1,↵2), (9.15)

G�(↵1,↵2) = C1�(↵1,↵2)G+(↵1,↵2+)

+ C2�(↵1,↵2)G�(↵1,↵2�)

+ C1�(↵1,↵2)G
0
+(↵1,↵2+)

+ C2�(↵1,↵2)G
0
�(↵1,↵2�)

+ C3�(↵1,↵2).
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Let’s differentiate the first and the second

equation according to ↵2.

Here the functions

C
n+(↵1,↵2), Cn�(↵1,↵2), n = 1, 2, 3

are known, and the functions

G+(↵1,↵2�), G�(↵1,↵2+),

G
0
+(↵1,↵2+), G

0
�(↵1,↵2�)

should be defined. For their definition let’s take

in the first and differentiated equation ↵2 = ↵2+,

and in the second and differentiated equation

↵2 = ↵2�. We get the algebraic system fot the

definition of all of the above-listed indetermi-

nates, which we should solve to get the decision

functions. The entry of the computed solutions

into the correlations (9.9)–(9.11), depending on

the stated boundary-value problem, then us-

ing the correlations (9.15), (9.12) gives the op-

portunity to determine completely stressedly-

deformed condition of coating with any of the

concerned errors and without them.

10. The Model the Starting Earthquake
In the work is represented obviously for the

first time the model of one type of earthquakes

beginning from the preparation to the accom-

plishment of the event. The model based fully on

the laws of physics and mechanics may reveal the

new type of faulting earthquake called the start-

ing one, as it precedes to strong crustal earth-

quakes, connected with the lithosphere plates’

interaction [1]. As lithospheric plates we take

the Kirchhoff plates on elastic half-space moving

to each other till they approach. The earthquake

is defined by drastic increase of stress concen-

tration in a specified area in comparison with a

normal condition. The mining allows evaluating

with the aid of specific equipment the location,

time and intensity of this type of earthquakes.

The patterns of this earthquake are revealed.

1. A great number of works made by sci-

entists from our as well as other countries are

dedicated to the earthquakes research. The

essential results that defined the direction of

researches on various steps are made in these

works. There the processes of earthquakes run-

ning and their impact on the environment are

studied in details. However, the problem of

their antecedents, i.e. prospective earthquake

locations, time and intensity of events could

not be solved. The development of new means

of geophysical information obtaining, of new

types of equipment for the deep Earth struc-

ture exploration and also of computing tools

and mathematical methods allow to indicate

and solve more difficult problems in seismol-

ogy than earlier. In the earthquakes research

two different approaches are distinguished, i.e.

the approach of observational and active seis-

mology. The first one implies the observation

consisting in using lots of observational devices

followed by the analysis and revealing the pa-

rameters of forthcoming earthquakes. The ac-

tive one is based on seismic activity theories

building, using as its base the observation data

and laws of physics, and on application of ad-

dressed means of impact made by powerful vi-

broseismic sources on specified areas of surface

for revealing the antecedents’ parameters. Mr.

Keilis-Borok [9], academician, wrote about the

first approach the following: “For a long time

the works on the earthquakes forecasting were

oriented generally on the observation system ex-

panding. The earthquake in California showed

us that it is not enough. It occurred in the

centre of the most powerful observation system

in the world, with thousands of sensors, teleme-

try and total computerization”. The second

approach was described in details in a collective

monograph under the guidance of academician,

Mr. Alekseev [10]. He also assumes the build-

ing of deep theories of earthquakes based on

physico-mechanical laws which stimulated the

directed studying of various types of these events

conducted, for example, in [11–13]. The most

profound considerations for earthquakes forecast

forming were proposed by the former directors

of the Institute of Physics of the Earth of the

Academy of Sciences of the USSR, academicians,

Mr. Gamburtsev and Mr. Sadovsky. Their ideas,

in authors’ opinion, are the manual in studying

antecedents on the modern stage. Mr. Gamburt-

sev had the following point of view [6]: “The

investigation of methods of earthquakes forecast

should be directed first of all to the searching

of mechanical earthquakes antecedents. Such

searching can be successful only if they will be

based on profound studying of all the details of

the mechanism of quick and slow movements of

lithospheric blocks in the areas of seismic activ-

ity. Mr. Sadovsky [7] states that it is impossible

to predict earthquakes taking as its base only

the layered structure of lithosphere. It is neces-

sary to take into account the actually existing

bock models.
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Figure 1. The slow movement of the mounting point of the GPS receiver in Sochi

2. The conducted research is based on the

theory of concealed defects worked out in [14]

and other authors’ publications. Let us use the

schemes made for describing concealed defects

in environments with coverings [14] assuming

that the coverings are half-plates with paral-

lel boarders with the distance of 2✓ between

them, placed on some linear deformed founda-

tion. Lithospheric plates are shaped by the

Kirchhoff plates. Let us assume that the space

between the plates of different types is hollow

and on the butt-ends the outside powers are act-

ing, which are directed according to the rule of

outward vectors in a local system of coordinates

x1x2x3 with the beginning in the plane x1x2
coinciding with the middle plane of the plate,

with the axis ox3 directed upward normally to

the plate, with the axis ox1 directed along the

tangent to the fault zone edge, with the axis

ox2 normally to its edge. The area occupied by

the left plate is marked by � and described by

the correlations |x1| 6 1, x2 6 �✓, and the

area occupied by the right one is marked by the

index r and coordinates |x1| 6 1, ✓ 6 x2. We

will proceed from the fact that the lithospheric

plates move extremely slow. On the Fig. 1 we

can see the speed of point indicating the loca-

tion of high-accuracy GPS receiver. The speed

is about tens of millimeters annually, that is

why the boarder task can be examined in static

variant.

Kirchhoff’s equation for fragments of b cover,

b = �, r, which occupy interval ⌦

b

with borders

@⌦
b

at vertical static exertion impacts t3b from

above and g3b from below, looks like

R
b

(@x1, @x2)u3b + "53b(t3b � g3b)

⌘
✓

@4

@x41
+ 2

@2

@x21

@2

@x22
+

@4

@x42

◆

u3b

+ "53b(t3b � g3b) = 0,

R
b

(�i↵1,�i↵2)U3b ⌘ R
b

(�i↵1,�i↵2)U3b

⌘ (↵2
1 + ↵2

2)
2U3b,

U3b = F2u3b, G3b = F2g3b,

T3b = F2t3b, b = �, r,

M
b

= �D
b1

✓

@2u3b
@x22

+ ⌫
b

@2u3b
@x21

◆

,

D
b1 =

D
b

H2
, D

b2 =
D

b

H3
,

Q
b

= �D
b2

✓

@3u3b
@x32

+ (2� ⌫
b

)

@3u3b
@x21@x2

◆

= f4b(@⌦b

),

u3b = f1b(@⌦b

),
@u3b
H@x2

= f2b(@⌦b

),

D
b

=

E
b

h3
b

12(1� ⌫2
b

)

, "53b =
(1� ⌫2

b

)12H4

E
b

h3
b

,
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"�1
6 =

(1� ⌫)H

µ
.

The connection between boundary stress and

surface displacement of elastic earth, where

plates are situated looks like

u3m(x1, x2) = "�1
6

2
X

n=1

ZZ

⌦n

k(x1 � ⇠1, x2 � ⇠2)

· g3n(⇠1, ⇠2) d⇠1 d⇠2,

x1, x2 2 ⌦m

, m = �, r, ✓,

⌦

�

(|x1| 6 1; x2 6 �✓),

⌦

r

(|x1| 6 1; ✓ 6 x2),

⌦

✓

(|x1| 6 1; �✓ 6 x2 6 ✓), n = �, r.

M
b

and Q
b

are bending moment and sharing

force in the system of axis x1ox2; h
b

is plate

thicknesses, H is dimensional parameter of base

material, for example, layer thickness. The des-

ignation is borrowed from [14]. F2 ⌘ F2(↵1,↵2),

and F1 ⌘ F1(↵1) are two-dimensional and one-

dimensional Fourier-transform operators, appar-

ently. Functional equations of boundary-value

problems can be represented as [14]

R
b

(�i↵1,�i↵2)U3b ⌘ (↵2
1 + ↵2

2)
2U3b

= �
Z

@⌦b

!
b

�"53bS3b(↵1,↵2), (10.1)

S3b(↵1,↵2) = F2(↵1,↵2)(t3b � g3b), b = �, r.

Here we can see that !
b

are exterior forms,

participating in performance and looking like

!
b

= eih↵,xi
(

�
h@3u3b
@x32

� i↵2
@2u3b
@x22

� ↵2
2
@u3b
@x2

+ i↵3
2u3b + 2

@3u3b
@x21@x2

� 2i↵2
@2u3b
@x21

i

dx1

+

h@3u3b
@x31

�i↵1
@2u3b
@x21

�↵2
1
@u3b
@x1

+i↵3
1u3b

i

dx2

)

,

b = �, r.

Calculating Leray’s residue forms, including

two-fold and pseudodifferential equations of

boundary-value problems and taking into ac-

count agreed notations we can introduce for

plates b = �, r as

F�1
1 (⇠�1 )

*

�
Z

@⌦�

n

i↵2�D
�1
�1 M�

�D�1
�2 Q�

� (↵2
2� + ⌫

�

↵2
1)
@u3�
@x2

+ i↵2�
⇥

↵2
2� + (2� ⌫

�

)↵2
1

⇤

u3�
o

ei↵1

x

1

dx1

+ "53�S3�(↵1,↵2�)

+

= 0, (10.2)

↵2� = �i
q

↵2
1, ⇠�1 2 @⌦

�

,

F�1
1 (⇠�1 )

*

�
Z

@⌦�

n

iD�1
�1 M�

� 2↵2�
@u3�
@x2

+ i
⇥

3↵2
2� + (2� ⌫

�

)↵2
1

⇤

u3�
o

ei↵1

x

1

dx1+

+ "53�S
0
3�(↵1,↵2�)

+

= 0,

⇠�1 2 @⌦
�

, @⌦
�

= {�1 6 x1 6 1, x2 = �✓} .
And consequently for the right plate

F�1
1 (⇠r1)

*

�
Z

@⌦r

n

i↵2+D
�1
r1 Mr

�D�1
r2 Qr

� (↵2
2+ + ⌫

r

↵2
1)
@u3r
@x2

+ i↵2+
⇥

↵2
2+ + (2� ⌫

r

)↵2
1

⇤

u3r
o

ei↵1

x

1

dx1

+ "53rS3r(↵1,↵2+)

+

= 0, (10.3)

↵2+ = i
q

↵2
1, ⇠r1 2 @⌦

r

,

F�1
1 (⇠r1)

*

�
Z

@⌦r

n

iD�1
r1 Mr

� 2↵2+
@u3r
@x2

+ i
⇥

3↵2
2+ + (2� ⌫

r

)↵2
1

⇤

u3r
o

ei↵1

x

1

dx1

+ "53rS
0
3r(↵1,↵2+)

+

= 0,
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⇠r1 2 @⌦
r

, @⌦
r

= {�1 6 x1 6 1, x2 = ✓} .

The derivative is calculated from parameter ↵2.

Let’s introduce the next system of notations on

basis of (10.2) and (10.3)

Y
�

= {y1�, y2�} , Z
�

= {z1�, z2�} ,

Y
r

= {y1r, y2r} , Z
r

= {z1r, z2r} ,

F1g = F1(↵1)g, F2g = F2(↵1,↵2)g,

y1� = D�1
�

F1M
�

, y2� = D�1
�

F1Q
�

,

y1r = D�1
r

F1Mr

, y2r = D�1
r

F1Qr

,

z1� = F1
@u

�

@x�2
, z2� = F1u

�

,

z1r = F1
@u

r

@xr2
, z2r = F1ur,

K
�

= {k1�, k2�} , K
r

= {k1r, k2r} ,

k1� = "53�F2(↵1,↵2�)(t
�

� g
�

)

= "53�S3�(↵1,↵2�),

k2� = "53�S
0
3�(↵1,↵2�),

k1r = "53rF2(↵1,↵2+)(t
�

� g
�

)

= "53rS3r(↵1,↵2+),

k2r = "53rS
0
3r(↵1,↵2+).

As the result pseudodifferential equations for

this case can be rewritten as a system of alge-

braic equations

� i↵2�y1� + y2� + (↵2
2� + ⌫

�

↵2
1)z1�

� i↵2�
⇥

↵2
2� + (2� ⌫

�

)↵2
1

⇤

z2� + k1� = 0,

� iy1� + 2↵2�z1�

� i
⇥

3↵2
2� + (2� ⌫

�

)↵2
1

⇤

z2� + k2� = 0,

� i↵2+y1r + y2r + (↵2
2+ + ⌫

r

↵2
1)z1r

� i↵2+
⇥

↵2
2+ + (2� ⌫

r

)↵2
1

⇤

z2r + k1r = 0,

� iy1r + 2↵2+z1r

� i
⇥

3↵2
2+ + (2� ⌫

r

)↵2
1

⇤

z2r + k2r = 0.

In matrix form the system is given by

A
�

Y
�

+B
�

Z
�

+K
�

= 0,

A
r

Y
r

+B
r

Z
r

+K
r

= 0.

For the sake of simplicity, let’s examine the case

when bonding moment and sharing force are

equal to zero, then we get Y
�

= 0, Y
r

= 0. The

solutions of resulting equations are easy to find

Z
�

= �B�1
�

K
�

, Z
r

= �B�1
r

K
r

,

(�1+⌫
�

)↵2
1z1��i↵2�

⇥

(1� ⌫
�

)↵2
1

⇤

z2� = �k1�,

2↵2�z1� + i
⇥

(1 + ⌫
�

)↵2
1

⇤

z2� = �k2�

(�1 + ⌫
r

)↵2
1z1r � i↵2+

⇥

(1� ⌫
r

)↵2
1

⇤

z2r = �k1r,

2↵2+z1r + i
⇥

(1 + ⌫
r

)↵2
1

⇤

z2r = �k2r,

�

�0 = �i(1� ⌫
�

)(3 + ⌫
�

)↵4
1,

�

r0 = �i(1� ⌫
r

)(3 + ⌫
r

)↵4
1,

z1� =

i↵2
1 [�(1 + ⌫

�

)k1��(1� ⌫
�

)k2�↵2�]

�

�0
,

z2� =

2↵2�k1� + (1� ⌫
�

)↵2
1k2�

�

�0
,

z1r =
i↵2

1 [�(1 + ⌫
r

)k1r�(1� ⌫
r

)k2r↵2�]

�

r0
,

z2r =
2↵2�k1r + (1� ⌫

r

)↵2
1k2r

�

r0
.

After applying of found correlations in for-

mulas for exterior forms in (10.2) and (10.3) we

will have two equations for ✓ > 0, and ✓ = 0.

G3r = G+, G3� = G�,

⇥

"53r(↵
2
1 + ↵2

2)
�2

+ "�1
6 K1(↵1,↵2)

⇤

·G+
(↵1,↵2)

= �
⇥

"53�(↵
2
1 + ↵2

2)
�2

+ "�1
6 K1(↵1,↵2)

⇤

·G�
(↵1,↵2) + U3✓(↵1,↵2)

+ (↵2
1 +↵2

2)
�2
⇥

A
�

k1� +B
�

k2� +A
r

k1r +B
r

k2r

+ "53�T
+
(↵1,↵2) + "53rT

�
(↵1,↵2)

⇤

,

✓ > 0,

U3✓(↵1,↵2) =

1
Z

�1

✓

Z

�✓

u3(x1, x2)e
ih↵,xi

dx1 dx2,
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⇥

"53r(↵
2
1 + ↵2

2)
�2

+ "�1
6 K1(↵1,↵2)

⇤

·G+
(↵1,↵2)

= �
⇥

"53�(↵
2
1 + ↵2

2)
�2

+ "�1
6 K1(↵1,↵2)

⇤

·G�
(↵1,↵2)

+(↵2
1+↵

2
2)

�2
⇥

A
�

k1�+B
�

k2�+A
r

k1r+B
r

k2r+

+ "53�T
+
(↵1,↵2) + "53rT

�
(↵1,↵2)

⇤

,

✓ = 0.

As ✓ ! 0, i.e. when the plates are approach-

ing, the first equation incessantly passes into

the second. We got two different Wiener-Hopf

equations. The first is extended of variationals

of Wiener–Hopf equation associated with the

presence of function U3✓(↵1,↵2). It is solving

by presented in [15] converse of system of two in-

tegrational equations of second kind with quite

continuous operators as

X+�
⇢

�M+
1

M�
2

Y �e�i2↵
2

✓

�+

=

⇢

1

M�
2

'e�i↵

2

✓

�+

,

Y �
+

⇢

M�
2

M+
1

X+ei2↵2

✓

��
=

⇢

1

M+
1

'ei↵2

✓

��
,

M1 = M+
1 M�

1 , M2 = M+
2 M�

2 ,

M+
2 G+

= X+, M�
1 G�

= Y �.

The designations of work are accepted here [15].

In the process of solution of functional

equation we have to designate functionals

S3b(↵1,↵2±), b = �, r, from some system of

equations [14].

3. While researching the solution of the first

equation it is proved that for ✓ > 0. the next

internals of contact stresses between plates and

layers take place.

g3�(x1, x2) = �1�(x1, x2)(�x2 � ✓)�1/2,

x2 < �✓,

g3r(x1, x2) = �1r(x1, x2)(x2 � ✓)�1/2,

x2 > ✓.

Here �1b(x1, x2), b = �, r, are incessant at

the both coordinates of function for sufficiently

smooth t3b, b = �, r [15].

The conversion of the second equation at

✓ = 0 is forming by traditional method of

Wiener–Hopf [15] and leads to the next internals

of solutions at x2 ! 0

g3�(x1, x2) ! �2�(x1, x2)x
�1
2

+�3�(x1, x2) ln |x2| ,
g3r(x1, x2) ! �2r(x1, x2)x

�1
2

+�3r(x1, x2) ln |x2| .

(10.4)

The functions �
nb

(x1, x2), b = �, r; n = 2, 3 are

incessant at the both parameters.

Proceeding from the position that correla-

tions (10.4) prove that there is detection of the

new type of earthquake, let us describe its com-

mon factors.

1) At ✓ > 0 the plates act upon layer as

simple stamps with right angles at borders [15].

If the edges break, then the facilities at edges

disappear. This can induce a slight earthquake.

2) When the plates approached ✓ = 0, but

did not combine, preserving specified boundary

conditions on edges, and Newton’s third law

hasn’t been there yet, then the irregularities be-

tween them occur x�1
2 and ln |x2|. For mechan-

ics this is absolutely clear situation, described

in many works and frequent, for example, in

studies of solidity of metal angle, welded onto

foundation. For some values of angular solution

of angle there is the growth of exertion factors in

vicinity of an angle. It indicates fast decompo-

sition of combination under external influences,

when the facility appears as non-totalize. When

the plates did not combine until the accomplish-

ment of Newton’s third law, they can vertically

slide with edges against one another and under

other external influences upon them, like scis-

sors, they can vertically rip open the layer or

break. Such example of behavior of plates is

well-known among fishers: when the ice is thin,

it’s better not to come closer, or you can fall

through ice.

3) The decomposition happens as doublet,

there are two facilities of exertion. G.A. Gan-

durtsev and other seismologists concluded from

analysis of the first wave arrival about reiterated

and different-type decomposition in earthquake

focus. It is also possible that the large facility

is a shock, and the small one is aftershock.

4) Academicians B.B. Golitsin, A. Gandurt-

sev and other scientists spoke up about the

possibility of boundary adhesion of lithosphere

plates as the result of breaches when they ap-

proach and about the possibility of the next

layers, which lead to earthquakes. In our case

at the same features of lithosphere plates and
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Figure 2. Vibroseis source Failing Y-3000

matching of edges, the equation of displacement

and exertions in plates contact zone, i.e. ac-

complishment of Newton’s third law, leads to

disappearing of facilities, and two plates transfer

into one surface.

5) In order to use this result for practical

purposes, for certification of condition of frac-

tured zones we can apply heavy, weighing 30

tons seismic vibrator (Fig. 2), which are pro-

ducing in USA, for example, Y-3000, by Failing

company, and then supply such seismic hybrids

with information handling projects, which will

allow to realize monitoring of location of plates

and to calculate places and time of occurrence.

The simplest scalar interaction type of litho-

sphere plates is analyzed in the work. More

complicated vector cases demand using of so-

lution of Hilbert–Wiener problem, which was

recently published by authors.
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