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Abstract. The authors study the problem of constructing a Gauss curvature functional whose
variation on admissible surface is determined by its gauss curvature. In their previous papers the
functional of such a type had been found for axisymmetrical surfaces. The crucial point in its
constructing was correspondence between differential properties of the function determining it
and and variation of the first quadratic form of the surface. Besides it was very important that
axisymmetrical surfaces admit global half-geodesic parameterization. Thus, in order to obtain
functional yielding gausss curvature in the general case it was necessary to revise differential
equation whose solution gave Gauss curvature functoional in axisymmetrical case. This problemm
was solved by analytic continution of the solution into upper half-plane. Further the problem of
global half-geodesic parameterization arises. It is yet unsolved problem in the general setting. But
the authors earlier showed that continuously differentiable surfaces with positively determined
first quadratic form admit almost global half geodesic parameterization, i.e. it is possible to find a
familly of geodesic lines covering it up to the null Hausdorff measure. The authors following the
general lines study of axisysymmetrical case deduce integral-differential equations whose solution
give desirable variation of the first quadratic form . This variation in accordance with differential
properties of the solution of differentiable equation for the function determining gauss functional
solve the problem of gauss curvature functional for the surfaces lacking axial symmetry.

Keywords: flexural rigidity of intermediate layer, capillar forces, Gauss curvature, mean curvature,
Christoffel symbols, almost global half-geodesic parameterization, generalized analytic functions.

In the papers [1–3] of the authors were stud-
ied the equilibrium forms of the liquid drops
pending from the flat surfaces in the axisymmet-
rical case. We use there variational method as
a main tool of investigation. It was applied in
this setting for the first time (compare with [4],
see also [5, 6]).

In order to take into account intermediate
layer we must substitute classical Laplace con-
dition

∆𝑝 = 𝜆𝐻

by the following one

∆𝑝 = 𝜆𝐻 + 𝜃𝐾

Here ∆𝑝 denotes difference of the pressures be-
tween liquid and gas phases, 𝜆𝜃 – positive con-
stants characterizing capillary forces and those
ones acting in the intermediate layer, 𝐻 – mean
curvature of the surface and 𝐾 that of the
Gauss.

Thus, the problem of the functional whose
variation on the set of admissible functions is
determined by Gauss curvature of surface arises.
In the papers [1, 4] such a functional was intro-
duced in the axisymmetrical case.

Let 𝑥 = 𝑥 (𝑠), 𝑦 = 𝑦 (𝑠), 𝑠 ∈ [0, 𝐿] be
natural parametric representation of the twice-
differentiable curve generating axisymmetrical
surface 𝑆. Here (𝑥, 𝑦) denotes Cartesian coordi-
nates of the points in meridional section of the
drop with axis 𝑥 oriented along a line orthogonal
to the plane from which the drop is pending.

The functional mentioned above and which
we denote as Ξ has the following form

Ξ(𝑆) = 2𝜋

𝑦̇∫︁

0

𝑓 (𝑦̇) d𝑠, 𝑦̇ =
d𝑦

d𝑠
(1)

Here function 𝑓

𝑓 (𝑦̇) =

√︀
1 − 𝑦̇2

2
×

×
{︂
𝐸0 −

𝑦̇∫︁

0

(︁
arcsin𝜎 + 𝜎

√︀
1 − 𝜎2 − 𝜋

2

)︁
×

×
(︁√︀

1 − 𝜎2
)︁− 3

2

}︂
d𝜎

is a solution of the differential equation
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d2𝑓

d𝜏2

√︀
1 − 𝜏2 − d𝑓

d𝜏

𝜏√
1 − 𝜏2

+ 𝑓
1√

1 − 𝜏2
= −1,

𝜏 ∈ [0, 1]

We note here that functional Ξ is determined up
to the constant by integrating function 𝑓 along
geodesics of surface 𝑆.

We are going now to generalize the func-
tional (1) to the case of surfaces lacking axial
symmetry. We consider now the set 𝐻 of con-
tinuously differentiable non-parametric surfaces.
We suppose that for each of these surfaces the
function it representing has second generalized
derivatives that locally integrates with square.
We also suppose that they have plane of sym-
metry and intersection of this plane with the
surface is its geodesic line of maximal length. It
is clear that now we must restrict themselves
to the surfaces, which admit covering by its
geodesics at least up to the set of null Hausdorff
measure. We proved ([7]) that such a covering
is possible for surfaces of the set 𝐻.

Let
d𝑠2 = d𝑢2 +𝐺 d𝑣2 (2)

be the first quadratic form in half geodesic pa-
rameterization defined by the above – mentioned
geodesic covering. In what follows we may as-
sume that parametric domain is unit disk in the
plane 𝑤 = 𝑢+ 𝑖𝑣. It is well known that in this
case as in axisymmetrical one Gauss curvature
𝐾 may be represented in the form ([8])

𝐾 = −
√̈
𝐺√
𝐺
,

√̈
𝐺 =

d2
√
𝐺

d𝑠2

We assume further that the function 𝐺̈ is the
bounded one.

In the general case, we are going to consider,
the function |𝐺̇| can assume the values greater
than unit, which means that we cannot apply
function (2) in this case.

The last obstacle we can easily overcome by
introducing the following function 𝑓⋆ satisfying
the following equation

d

d𝑡

[︂(︀
1 − 𝑡2

)︀ d𝑓*

d𝑡

]︂
+

d(𝑡𝑓*)
d𝑡

= −
√︀
𝑡2 − 1 (3)

We can write it down in an explicit form but
it is not necessary to do. In the sequel, we use

only the proper equation, which the function
𝑓** satisfies. We get this equation using ana-
lytic continuation of the function 𝑓 into upper
half plane.

Let us consider on the space 𝐻 the following
functional of Gauss curvature

Ξ* (𝑆) =

1∫︁

−1

d𝑣

√
1−𝑣2∫︁

√
1−𝑣2

𝑓⋆
(︁√︀

𝐺̇
)︁

d𝑢 (4)

𝐺̇ =
d𝐺

d𝑠
=

d𝐺

d𝑢

We are going to prove that Gauss curva-
ture represents the linear part of the variation
of the functional Ξ* (𝑆) subjected to a special
variation.

Let us consider surface 𝑆 with non-
parametric representation 𝑧 = 𝑧 (𝑥, 𝑦), (𝑥, 𝑦) ∈
∈ 𝐷 ⊂ 𝑅2. We do not discuss here the proper-
ties of boundary of domain 𝐷 because we are
interested in local variations of the surface 𝑆
Let us consider in neighborhood 𝑁0 of the point
(𝑥0, 𝑦0) ∈ 𝐷 variation 𝑆𝜀 of the surface 𝑆 with
non-parametric representation 𝑧𝜀 = 𝑧𝜀 (𝑥, 𝑦) of
the following form

𝑧𝜀(𝑥, 𝑦) = 𝑧(𝑥, 𝑦)

+ 𝜀[𝑧 (𝑥+ 𝛼(𝑥, 𝑦), 𝑦 + 𝛽(𝑥, 𝑦))

+ 𝜆 (𝑥, 𝑦)] + 𝑜(𝜀) (5)

Here the functions 𝛼, 𝛽, 𝜆 are continuously
differentiable and finite functions given in the
neighborhood 𝑁0 having generalized derivatives
of the second order.

Theorem 1. Let

d𝑠2𝜀 = d𝑢2 +𝐺𝜀 d𝑣2 (6)

be first quadratic form of the surface 𝑆𝜀 ∈ H
corresponding to its almost global half-geodesic
parameterization. We suppose that the sec-
ond order-generalized derivatives of the function
𝑧 = 𝑧 (𝑥, 𝑦) are bounded in the neighborhood
𝑁0 of the point (𝑥0, 𝑦0) ∈ 𝐷, 𝑥̇, 𝑦̇ differ from
zero and ∇̇𝑧 ̸= (0, 0) in it. We suppose also
that the function 𝐺̈ is bounded at the point
(𝑢0, 𝑣0), corresponding to the point (𝑥0, 𝑦0) in
half-geodesic parameterization. Then for any
twice-differentiable 𝜆 there exist continuously-
differentiable functions 𝛼, 𝛽 belonging to the
space 𝐶 (𝑁0) with bounded derivatives of the
second order and such that

√
𝐺𝜀 =

√
𝐺+ 𝜀𝜆+ 𝑜 (𝜀) , (7)
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d𝑠𝜀 = d𝑠+ 𝜀
√̇
𝐺𝜆̇d𝑠+ 𝑜 (𝜀) , 𝜀→ 0 (8)

Proof. To begin with, we deduce for the func-
tions 𝛼, 𝛽 a system consisting of integral dif-
ferential equation. We base our reasoning on
assumption that equalities (7), (8) are valid.
Solving the system, we get the functions 𝛼, 𝛽
that satisfy theorem’s conditions.

For the first, we find geodesics of the surface
𝑆𝜀. Let

𝑥 = 𝑥 (𝑢, 𝑣0) , 𝑦 = 𝑦 (𝑢, 𝑣0)

be parameterization of geodesic of the surface
𝑆 and

𝑥𝜀 = 𝑥𝜀 (𝑢, 𝑣0) = 𝑥 (𝑢, 𝑣0)

+𝜀𝑘 (𝑥 (𝑢, 𝑣0) , 𝑦 (𝑢, 𝑣0)) + 𝑜 (𝜀) ,

𝜀→ 0,

𝑦𝜀 = 𝑦𝜀 (𝑢, 𝑣0) = 𝑦 (𝑢, 𝑣0)

+𝜀𝑙 (𝑥 (𝑢, 𝑣0) , 𝑦 (𝑢, 𝑣0)) + 𝑜 (𝜀) ,

𝜀→ 0

(9)

geodesics of the surface 𝑆𝜀. We get from the
equations (9) that

d𝑠𝜀
d𝑠

= 1 + 𝜀
d𝑘*

d𝑢

d𝑥

d𝑠
+ 𝜀

d𝑙*

d𝑢

d𝑦

d𝑠

+ 𝜀Λ𝑥𝑘
* + 𝜀Λ𝑦𝑙

* + 𝑜 (𝜀) , 𝜀→ 0

𝑘* (𝑢) := 𝑘 (𝑥 (𝑢, 𝑣0) , 𝑦 (𝑢, 𝑣0)) ,

𝑙* (𝑢) := 𝑙 (𝑥 (𝑢, 𝑣0) , 𝑦 (𝑢, 𝑣0)) ,

Λ* (𝑢) := Λ (𝑥 (𝑢, 𝑣0) , 𝑦 (𝑢, 𝑣0))

(10)

We see that functions 𝑘𝑙 determine variation
of the arc length. We find them using formula
(8) for it.

Let

𝑥′′ + Γ1
11

(︀
𝑥′
)︀2

+ 2Γ1
12𝑥

′𝑦′ + Γ1
22

(︀
𝑦′
)︀2

= 0,

𝑦′′ + Γ2
11

(︀
𝑦′
)︀2

+ 2Γ2
12𝑥

′𝑦′ + Γ2
22

(︀
𝑦′
)︀2

= 0
(11)

be equation of geodesic 𝑥 = 𝑥 (𝑢, 𝑣), 𝑦 = 𝑦 (𝑢, 𝑣)
of the surface 𝑆 corresponding to the fixed pa-
rameter 𝑣 and

𝑥′′𝜀 + Γ1
11(𝜀)

(︀
𝑥′𝜀
)︀2

+ 2Γ1
12(𝜀)𝑥

′
𝜀𝑦

′
𝜀

+Γ1
22 (𝜀)

(︀
𝑦′𝜀
)︀2

= 0,

𝑦′′𝜀 + Γ2
11 (𝜀)

(︀
𝑥′𝜀
)︀2

+ 2Γ2
12(𝜀)𝑥

′
𝜀𝑦

′
𝜀

+Γ2
22 (𝜀)

(︀
𝑦′𝜀
)︀2

= 0

(12)

be equation of geodesic 𝑥𝜀 = 𝑥𝜀 (𝑢, 𝑣), 𝑦𝜀 =
= 𝑦𝜀 (𝑢, 𝑣) of the surface 𝑆𝜀 corresponding to
the same parameter.

Here Γ𝑘
𝑖𝑗 – Christoffel symbols of the surface

𝑆 and Γ𝑘
𝑖𝑗 (𝜀) – that of the surface 𝑆𝜀.

Let 𝑥 := 𝑥1, 𝑦 := 𝑥2. Simple calculations
show

Γ𝑘
𝑖𝑗 (𝜀) = Γ𝑘

𝑖𝑗 + 𝜀
(︁
𝛾𝑘𝑖𝑗 + ̃︁𝛾𝑘𝑖𝑗

)︁
+ 𝑜 (𝜀) , (13)

𝜀→ 0

Here

𝛾𝑘𝑖𝑗 :=
𝑧𝑥𝑘

1 + |∇𝑧|2
⟨

Λ*,
𝜕

𝜕𝑥𝑖
(𝛼, 𝛽)

⟩

𝑥𝑗

Λ⋆ :=
(︀
𝑧𝑥1 (𝑥1 + 𝜀𝛼 (𝑥1,𝑥2) , 𝑥2 + 𝜀𝛽 (𝑥1,𝑥2)) ,

𝑧𝑥2 (𝑥1 + 𝜀𝛼 (𝑥1,𝑥2) , 𝑥2 + 𝜀𝛽 (𝑥1,𝑥2))
)︀

̃︁𝛾𝑘𝑖𝑗 :=
𝜆𝑥𝑗𝑥𝑘

𝑧𝑥𝑘

1 + |∇𝑧|2
− 2𝑅𝑧𝑥𝑘

𝑧𝑥𝑖𝑥𝑗

𝑅 :=
𝑧2𝑥1

⟨
Λ*, 𝜕

𝜕𝑥1
(𝛼, 𝛽)

⟩
+ 𝑧2𝑥2

⟨
Λ*, 𝜕

𝜕𝑥2
(𝛼, 𝛽)

⟩

(︁
1 + |∇𝑧|2

)︁2

+
∇𝜆 · ∇𝑧

1 + |∇𝑧|2
(14)

and ⟨𝑒, 𝑔⟩ signifies scalar product of the vectors
𝑒, 𝑔.

Let now

𝑏𝑘 :=
(︁
𝛾𝑘𝑖𝑗 + 𝛾𝑘𝑖𝑗

)︁(︂d𝑥1
d𝑢

)︂𝑖(︂d𝑥2
d𝑢

)︂𝑗

, (15)

𝑖, 𝑗 = 1, 2,

b = (𝑏1, 𝑏2)ℎ,

a :=

(︂
d𝑘

d𝑢
,

d𝑙

d𝑢

)︂𝑇

,

𝑎𝑖𝑗 := Γ𝑖
𝑗𝑙

d𝑥𝑙
d𝑢

, A := (𝑎𝑖𝑗)

Then from (11), (13), (14) we arrive at the
boundary value problem for the following sys-
tems of ordinary differential equations on each
of geodesic of the surface in the neighborhood
𝑊0 of the point (𝑢0, 𝑣0), corresponding to the
point (𝑥0, 𝑦0) in half-geodesic parameterization

da

d𝑢
+𝐴a = b,

a (𝑢0 − 𝜀) = a (𝑢0 + 𝜀) = 0.

(16)
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Taking into account differential properties of
the function 𝑧 = 𝑧 (𝑥, 𝑦), we must limit our self
by the generalized solutions of this equation. It
means that in the neighborhood 𝑊0 of the point
(𝑢0, 𝑣0) we procure function a that have uni-
formly bounded in 𝑊0 generalized derivatives
da/d𝑢 on almost all the geodesics {𝑣 = const}
from this neighborhood.

In order to find solutions of homogeneous
system from (16) of this type we introduce the
following integral equations

𝑘 (𝑢, 𝑣) +

𝑢∫︁

𝑢0−𝜀(𝑣)

[𝑎11𝑘 (𝑠, 𝑣) + 𝑎12𝑙 (𝑠, 𝑣)] d𝑠 = 0,

𝑙 (𝑢, 𝑣) +

𝑢∫︁

𝑢0−𝜀(𝑣)

[𝑎21𝑘 (𝑠, 𝑣) + 𝑎22𝑙 (𝑠, 𝑣)] d𝑠 = 0

(17)
in the space 𝐶 (𝑊0).

The systems (17) defines contraction oper-
ator in this space. Thus, there exists in this
neighborhood measurable function 𝜔1 satisfying
on almost all geodesics to differential equations
(16) in the generalized sense and assuming zero
values at the points (𝑢0 − 𝜀 (𝑣) , 𝑣).

In the same manner, we find function 𝜔2 sat-
isfying equations (16) and assuming zero value
at the points (𝑢0 + 𝜀 (𝑣) , 𝑣). Solutions we found
are linearly independent.

In a standard way, we obtain now solutions
a of the non-homogenous equation (16),

a = 𝑐1 (𝑢, 𝑣)𝜔1 + 𝑐2 (𝑢, 𝑣)𝜔2, (18)

𝜔𝑗 =
(︀
𝜔1
𝑗 , 𝜔

2
𝑗

)︀
, 𝑗 = 1, 2

𝑐1 (𝑢, 𝑣) =

𝑢0+𝜀∫︁

𝑢

𝐵1 d𝜎, 𝑐2 (𝑢, 𝑣) =

𝑢∫︁

𝑢0−𝜀

𝐵2 d𝜎

𝐵1 =
𝑏1𝜔

2
2 − 𝑏2𝜔

1
2

∆0
, 𝐵2 =

𝑏2𝜔
1
1 − 𝑏2𝜔

2
1

∆0

Using representation (18) we find the following
functions

𝑘*,
d𝑘*

d𝑢
, 𝑙*,

d𝑙*

d𝑢

Substituting them into formula (10) and using
presupposed connection between d𝑠, d𝑠𝜀, we
arrive at the first integral-differential equation

for the functions 𝛼, 𝛽

(−1)𝑘 𝜔𝑗
𝑘𝑎

*
𝑖𝑗

d𝑥𝑗

d𝑠
𝐵𝑘 + (−1)𝑘

d𝜔𝑗
𝑘

d𝑢
𝑎*𝑖𝑗

d𝑥𝑗

d𝑠

×
𝑢∫︁

𝑢0−(−1)𝑘𝜀

𝐵𝑘 d𝜎 + Λ𝑥𝑘
* + Λ𝑦𝑙

* + 𝑎*𝑘𝑗𝑏𝑗

=
√̇
𝐺𝜆̇, (19)

𝑘 = 1, 2

Here
(︁
𝑎*𝑖𝑗
)︁

represents matrix inverse to the ma-
trix A.

The equations from (19) for the functions⟨
Λ*, 𝜕

𝜕𝑥1
(𝛼, 𝛽)

⟩
,
⟨

Λ*, 𝜕
𝜕𝑥2

(𝛼, 𝛽)
⟩

in fact are
equivalent. In the sequel, we will use that one
which corresponds to the value 𝑘 = 2.

Substitute now instead of 𝐵𝑘, 𝑘 = 1, 2, their
representations in terms of 𝑏2. Then we obtain

𝐵*𝑏2 + (−1)𝑘
d𝜔𝑗

𝑘

d𝑢
𝑎*𝑖𝑗

d𝑥𝑗

d𝑠

×
𝑢∫︁

𝑢0−(−1)𝑘𝜀

𝐵𝑘 (𝑏2) 𝑑𝜎 + Λ𝑥𝑘
* (𝑏2) + Λ𝑦𝑙

* (𝑏2)

=
√̇
𝐺𝜆̇

Here 𝑘* (𝑏2), 𝑙* (𝑏2) – operators of contraction
whose norm can be made arbitrarily small. As
the determinate ∆0 can be made arbitrarily
small coefficient 𝐵* does not turn into zero.

Dividing by 𝐵* we get integral equation with
operator of contraction in the space 𝐿∞ (𝑊0) in
the neighborhood (𝑢0, 𝑣0). This permits us to
find function 𝑏2.

Let us deduce the second equation in order
of the same unknowns. To this end, we notice
that on the geodesics of the surfaces 𝑆, 𝑆𝜀 the
following equations take place

d2

d𝑠2

√
𝐺+𝐾

√
𝐺 = 0,

d2

d𝑠2𝜀

√
𝐺𝜀 +𝐾𝜀

√
𝐺𝜀 = 0

(20)

Here, the symbols 𝐾, 𝐾𝜀 denote Gauss cur-
vatures of the surfaces 𝑆, 𝑆𝜀 respectfully.

Let us denote now

𝑙𝑖𝑗 :=

⟨
Λ*,

𝜕

𝜕𝑥(𝑖+1)(𝑚𝑜𝑑2)
(𝛼, 𝛽)

⟩

𝑥(𝑗+1)(𝑚𝑜𝑑2)

+ 𝜆𝑥(𝑖+1)(𝑚𝑜𝑑2)𝑥(𝑗+1)(𝑚𝑜𝑑2)
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Direct calculations show

𝐾𝜀 = 𝐾 − 2𝐾𝜀
𝑧2𝑥𝑖

⟨
Λ*, 𝜕

𝜕𝑥𝑖
(𝛼, 𝛽)

⟩
+ ∇𝜆 · ∇𝑧

(︁
1 + |∇𝑧|2

)︁3

+ (−1)𝑖+𝑗 𝜀
𝑧𝑥𝑖𝑥𝑗 𝑙𝑖𝑗(︁

1 + |∇𝑧|2
)︁2 + 𝑜 (𝜀) , (21)

𝜀→ 0

Again we are summing up in (21) by repeat-
ing indexes.

We obtain further

d2

d𝑠2𝜀

√
𝐺𝜀

=
√̈
𝐺−𝜀

{︃
d

d𝑠

[︂(︁
𝐺̇𝜆̇
)︁
− 𝜆

2
√
𝐺

]︂
+

d
√̇
𝐺

d𝑠

√̇
𝐺𝜆̇

}︃

+ 𝑜 (𝜀) , 𝜀→ 0 (22)

Besides, we get

𝐾𝜀

√
𝐺𝜀 = 𝐾

√
𝐺+ 𝜀

𝜆

2
√
𝐺

+ (𝐾𝜀 −𝐾)
√
𝐺+ 𝑜 (𝜀) , (23)

𝜀→ 0

Substituting now (22) and (23) into the sec-
ond equation from (20) and taking into account
(21) we arrive at the second equation we need

− 2𝐾 (−1)𝑖+𝑗 𝑧𝑥𝑖𝑥𝑗 𝑙𝑖𝑗(︁
1 + |∇𝑧|2

)︁

+ 2𝐾
𝑧2𝑥𝑖

⟨
Λ*, 𝜕

𝜕𝑥𝑖
(𝛼, 𝛽)

⟩
+ ∇𝜆 · ∇𝑧

(︁
1 + |∇𝑧|2

)︁3

=
d

d𝑠

[︂(︁
𝐺̇𝜆̇
)︁
− 𝜆

2
√
𝐺

]︂
+

√̈
𝐺
√̇
𝐺𝜆̇′

−𝐾
𝜆

2
√
𝐺

(24)

This is the second equation we wished to get.
It includes partial derivatives of the functions
𝛼, 𝛽.

It permits us to find differential equation for
the functions

⟨
Λ*,

𝜕

𝜕𝑥𝑖
(𝛼, 𝛽)

⟩
, 𝑗 = 1, 2.

Let
𝑈 :=

⟨
Λ*,

𝜕

𝜕𝑥1
(𝛼, 𝛽)

⟩
,

𝑉 :=

⟨
Λ*,

𝜕

𝜕𝑥2
(𝛼, 𝛽)

⟩

Then we get from (15)

𝑈𝑥1

(︂
d𝑥1
d𝑢

)︂2

+
d𝑥1
d𝑢

d𝑥2
d𝑢

[𝑉𝑥1 + 𝑈𝑥2 ]+𝑉𝑥2

(︂
d𝑥2
d𝑢

)︂2

− 2
𝑧𝑥𝑖𝑥𝑗(︁

1 + |∇𝑧|2
)︁2

d𝑥𝑖
d𝑢

d𝑥𝑗
d𝑢

(︀
𝑧2𝑥1

𝑈 + 𝑧2𝑥2
𝑉
)︀

= 𝑏⋆2 (25)

𝑏⋆2 = 𝑏2 + 2
∇𝜆 · ∇𝑧

(︁
1 + |∇𝑧|2

)︁2 𝑧𝑥𝑖𝑥𝑗

d𝑥𝑖
d𝑢

d𝑥𝑗
d𝑢

− 𝜆𝑥𝑖𝑥𝑗

d𝑥𝑖
d𝑢

d𝑥𝑗
d𝑢

In the same manner, we rewrite the equation
(24)

− 2𝐾
𝑧𝑥2𝑥2(︁

1 + |∇𝑧|2
)︁2𝑈𝑥1

+ 2𝐾
𝑧𝑥1𝑥2(︁

1 + |∇𝑧|2
)︁2 [𝑉𝑥1 + 𝑈𝑥2 ] − 𝑈𝑥2

− 2𝐾
𝑧𝑥1𝑥1(︁

1 + |∇𝑧|2
)︁2𝑉𝑥2

+ 2𝐾
𝑧2𝑥1(︁

1 + |∇𝑧|2
)︁3𝑈

+ 2𝐾
𝑧2𝑥2(︁

1 + |∇𝑧|2
)︁3𝑉 = 𝑔 (26)

𝑔 = −2𝐾
∇𝜆 · ∇𝑧

(︁
1 + |∇𝑧|2

)︁3

+
d

d𝑠

[︂(︁
𝐺̇𝜆̇
)︁
− d

d𝑠

(︂
𝜆

2
√
𝐺

)︂]︂
+

d2
√
𝐺

d𝑠2

√̇
𝐺𝜆̇.

It is necessary to subline that in constructing the
equation (26) we have substituted the function
Λ⋆ by the function Λ this is possible because the
solutions of the linear equations we are consid-
ering depend continuously on their coefficients.
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At the same time, we are interested in the distor-
tions of the initial surface up to the increments
of the first order.

From the equations (25), (26) we now get

d𝑧𝑥2

d𝑢

d𝑥1
d𝑢

𝑈𝑥1 +
d𝑧𝑥1

d𝑢

d𝑥2
d𝑢

𝑉𝑥2

− (𝑧𝑥1𝑥2 + 1)
𝑧𝑥𝑖𝑥𝑗(︁

1 + |∇𝑧|2
)︁2

× d𝑥𝑖
d𝑢

d𝑥𝑗
d𝑢

(︀
𝑧2𝑥1

𝑈 + 𝑧2𝑥2
𝑉
)︀

= 𝑏⋆2𝑧𝑥1𝑥2 − 𝑔
d𝑧𝑥1

d𝑢

d𝑥2
d𝑢

⎛
⎜⎝ 2𝐾
(︁

1 + |∇𝑧|2
)︁3

⎞
⎟⎠

−1

=: 𝑏⋆*2 (27)

𝑈𝑥1

(︂
d𝑥1
d𝑢

)︂2

+
d𝑥1
d𝑢

d𝑥2
d𝑢

[𝑉𝑥1 + 𝑈𝑥2 ]

+ 𝑉𝑥2

(︂
d𝑥2
d𝑢

)︂2

− 2
𝑧𝑥𝑖𝑥𝑗(︁

1 + |∇𝑧|2
)︁2

d𝑥𝑖
d𝑢

d𝑥𝑗
d𝑢

(︀
𝑧2𝑥1

𝑈 + 𝑧2𝑥2
𝑉
)︀

= 𝑏⋆2 (28)

Let

M1 =

⎛
⎜⎜⎜⎜⎜⎝

d𝑧𝑥2

d𝑢

d𝑥1

d𝑢

d𝑧𝑥1

d𝑢

d𝑥2

d𝑢

(︂
d𝑥1
d𝑢

)︂2 (︂
d𝑥2
d𝑢

)︂2

⎞
⎟⎟⎟⎟⎟⎠

be matrix of the coefficients of the unknown 𝑈𝑥1 ,
𝑉𝑥2 and 𝜅 = det M1.

Solving (27), (28) in order of the functions
𝑈𝑥1 , 𝑉𝑥2we get after simple transformations

𝑈𝑥1 − 𝑉𝑥2 +

(︂
d𝑧𝑥1

d𝑢

d𝑥2
d𝑢

+
d𝑧𝑥2

d𝑢

d𝑥1
d𝑢

)︂
(𝜅)−1

× (𝑉𝑥1 + 𝑈𝑥2) + 𝐿 (𝑈.𝑉 ) = 𝑏3

Here 𝐿 (𝑈.𝑉 ) is the first coordinate of the vector

(M1)
−1

⎛
⎝

Ψ1

Ψ2

⎞
⎠

Ψ1 = − (𝑧𝑥1𝑥2 + 1)

× 𝑧𝑥𝑖𝑥𝑗(︁
1 + |∇𝑧|2

)︁2
d𝑥𝑖
d𝑢

d𝑥𝑗
d𝑢

(︀
𝑧2𝑥1

𝑈 + 𝑧2𝑥2
𝑉
)︀
,

Ψ2 = −2
𝑧𝑥𝑖𝑥𝑗(︁

1 + |∇𝑧|2
)︁2

d𝑥𝑖
d𝑢

d𝑥𝑗
d𝑢

(︀
𝑧2𝑥1

𝑈 + 𝑧2𝑥2
𝑉
)︀

and 𝑏3 of the vector

(M1)
−1

⎛
⎝
𝑏⋆*2

𝑏⋆2

⎞
⎠

Let now

𝜕

𝜕𝑧
=

1

2

(︂
𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦

)︂
,

𝜕

𝜕𝑧
=

1

2

(︂
𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦

)︂

In what follow we also will use the following
notations

𝑈𝑧 =
𝜕𝑈

𝜕𝑧
, 𝑈𝑧 =

𝜕𝑈

𝜕𝑧
,

𝑉𝑧 =
𝜕𝑉

𝜕𝑧
, 𝑉𝑧 =

𝜕𝑉

𝜕𝑧

After simple calculations we now get

(𝜅* + 3𝑖)𝑊𝑧 − (𝜅* + 𝑖)𝑊 𝑧 + 𝑖𝐿 (𝑈.𝑉 ) = 𝑖𝑏3

Comparing this equation with the conjugated
one

− (𝜅* − 𝑖)𝑊𝑧+(𝜅* − 3𝑖)𝑊 𝑧−𝑖𝐿 (𝑈.𝑉 ) = −𝑖𝑏3
we arrive at the generalized analytic functions
equation

8𝑊𝑧 + 2𝑖 (𝜅* − 𝑖)𝐿 (𝑈.𝑉 ) = −4𝑖𝑏3 (29)

Using Vekua operator we pass for the equa-
tion (29) is equivalent to the following integral
equation

𝑊 (𝑧) − 1

𝜋

∫︁∫︁

𝑁0

2𝑖 (𝜅* − 𝑖)𝐿
(︀
𝑊.𝑊

)︀
(𝜁)

𝜁 − 𝑧
d𝜉 d𝜂

=
1

𝜋

∫︁∫︁

𝑁0

4𝑖𝑏3
𝜁 − 𝑧

d𝜉 d𝜂 + Φ (𝑧) , (30)

𝜁 = 𝜉 + 𝑖𝜂

10
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Here Φ(𝑧) is an arbitrary analytic function
([9]).

The equation (30) is an integral equation
with operator of contraction for the sufficiently
small 𝑁0 Thus we get the functions 𝑈 , 𝑉 sat-
isfying equations (25), (26) which satisfies zero
condition on the boundary of 𝑁0.

Now let us consider the following equations

𝑈 :=

⟨
Λ,

𝜕

𝜕𝑥1
(𝛼, 𝛽)

⟩
,

𝑉 :=

⟨
Λ,

𝜕

𝜕𝑥2
(𝛼, 𝛽)

⟩ (31)

Let 𝑔 := 𝛼 + 𝑖𝛽. After elementary calcula-
tions we get from (31) the following equation

[︂(︂ −𝑖
𝑧𝑥1 + 𝑖

− 𝑧𝑥1

𝑧𝑥1 − 𝑖

)︂
− 1

]︂
𝜕𝑔

𝜕𝑧
− 𝜕𝑔

𝜕𝑧

=
1

𝑧𝑥1 + 𝑖
(𝑈 − 𝑖𝑉 ) − 1

𝑧𝑥1 − 𝑖
(𝑈 + 𝑖𝑉 ) (32)

Introducing now the equation that conju-
gates the equation (32) we exclude

𝜕𝑔

𝜕𝑧

As a result, we get non-homogeneous Cauchy–
Riemann equation

𝜕𝑔

𝜕𝑧
= 𝑀 (𝑈, 𝑉 )

Here 𝑀 (𝑈, 𝑉 ) is a linear form depending on
variables 𝑈 , 𝑉 . It is known that a general solu-
tion of this equation may be represented in the
form

𝑔 (𝑧) = 𝐹 (𝑧)− 1

𝜋

∫︁∫︁

𝑁0

𝑀 (𝑈, 𝑉 ) (𝜁)

𝜁 − 𝑧
d𝜉 d𝜂 (33)

with an arbitrary analytic function 𝐹 (𝑧)
As the function represented by integral op-

erator from (33) is evidently Holder continuous,
than we can select 𝐹 (𝑧) in such a way that 𝑔 (𝑧)
would be equal to zero on the boundary of 𝑁0.

Thus, we get functions 𝛼, 𝛽 we needed.
The theorem is proved. �
Now we can prove the following theorem.

Theorem 2. The first variation of the func-
tional (4) over space of admissible functions

under conditions of the theorem 1 has the fol-
lowing representation

𝛿Ξ* (𝑆) = 𝜀

∫︁∫︁

𝑆

−𝐾𝜆d𝑆

Proof. Let us consider the difference

1∫︁

−1

d𝑣

√
1−𝑣2∫︁

√
1−𝑣2

𝑓⋆
(︁√︀

𝐺̇𝜀

)︁ d𝑠𝜀
d𝑢

d𝑢

−
1∫︁

−1

d𝑣

√
1−𝑣2∫︁

√
1−𝑣2

𝑓⋆
(︁√︀

𝐺̇
)︁

d𝑢 =

=

1∫︁

−1

d𝑣

√
1−𝑣2∫︁

√
1−𝑣2

𝑓⋆
(︁√̇

𝐺+ 𝜀𝜆̇+ 𝑜 (𝜀)
)︁

×
(︁

1 − 𝜀
√̇
𝐺𝜆̇+ 𝑜 (𝜀)

)︁
d𝑢−

−
1∫︁

−1

d𝑣

√
1−𝑣2∫︁

√
1−𝑣2

𝑓⋆
(︁√︀

𝐺̇
)︁

d𝑢 (34)

As the function 𝑓⋆ satisfies the equation (3),
then from (34) we get

𝛿Ξ* (𝑆) = 𝜀

∫︁∫︁

𝑆

−𝐾𝜆d𝑆

The theorem is proved. �
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