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Abstract. This paper presents for the first time a solution of a vector boundary value problem
decomposed over packed block elements that are solutions of scalar boundary value problems
in a non-classical domain. Solutions of a number of vector partial differential equations in
continuum mechanics, electromagnetic phenomena, and field theory allow representations in the
form of decompositions based on solutions of scalar equations. This approach is convenient for
solving problems in the entire space. When solving boundary value problems, the difficulty of
applying this approach is the difficulty of satisfying boundary conditions. In a number of classical
fields, this can be done and exact solutions to boundary value problems can be obtained. These
classic areas include the half-space, the ball, the cylinder, and some areas obtained from views of
transformation groups spaces. However, for a number of important areas other than classical ones,
such as wedge-shaped ones, this approach has not yet been able to build accurate solutions. In
this paper, probably for the first time, this approach is used to construct an exact solution in the
first quadrant of a plane boundary value problem of the second kind for dynamic Lame equations.
The solution is compared with the obtained direct application of the block element method to the
vector boundary value problem. It is known that the unbounded domain makes it not effective
to use numerical methods in this boundary value problem. The solution is constructed using
the block element method under arbitrary boundary conditions. This makes it possible to study
different properties of solutions by changing the effects on the boundary.

Keywords: boundary value problems, block element method, packed block elements, Lame and
Helmholtz equations.

Introduction

It is known that the construction of pre-
cise solutions to boundary value problems in
practical applications allows us to identify the
properties and phenomena that have been omit-
ted when using various approximate approaches.
These include approximate analytical and nu-
merical methods. Thus, the recently developed
using of block element method [1] allowed us
to identify conditions for occurrence of certain
types of earthquakes [2,3]. The same method it
made it possible to detect the existence of a new
type of cracks that complement the Griffiths

cracks [4]. A huge number of papers have been
devoted to the study of boundary value prob-
lems for the Lame equation, containing both
analytical and numerical studies performed in
more than a century and a half. Not all publi-
cations in this area can be covered.

Note those of them where it was possible
to build accurate analytical solutions of some
types of boundary value problems for Lame
vector equations in non-classical domains. We
will omit from consideration numerous works
devoted to boundary value problems in a half-
space and a layered environment, where the
Fourier transform solves the problem. In spher-
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ical areas, we should note the works devoted
to the construction of eigenvector functions [5].
This approach has been developed for use in
cylindrical, elliptical, wedge-shaped, and conic
regions [6, 7].

In this paper, we develop an approach based
on the possibility of decomposing the solution
of the Lame vector equation into potential and
vortex components, each of which is described in
the dynamic case by solutions of the Helmholtz
equation [8]. The difficulty of applying this
method to boundary value problems in non-
classical domains is explained by the difficulty
of satisfying boundary conditions. Therefore, in
the works [8–10] in which important relations of
representation of solutions of vector boundary
value problems by scalars are constructed, the
solutions are constructed only for the half-space.
The block element method for the first time al-
lowed us to construct an exact solution to a com-
plex plane boundary value problem for the Lame
equations in the first quadrant by constructing a
series of scalar boundary value problems for the
Helmholtz equation. For comparison, the exact
solution of the vector plane dynamic boundary
value problem for the Lame equation in the first
quadrant is given, constructed by direct appli-
cation of the block element method to the Lame
vector equation. The latter, obtained for the
first time, is quite difficult to study and apply.

1. Basic equation

Let’s consider a plane boundary value prob-
lem of the second kind for a system of Lamé
equations, set in the first quadrant under har-
monic influences on the boundary. Previously,
it was not possible to get an exact solution to
this problem, but the block element method in
this paper makes it possible to do this in the
form of packed vector block elements.

In the first quadrant, Lame’s dynamic equa-
tions, after excluding the term exp (−𝑖𝜔𝑡), have
the form

(𝜆+ 𝜇)
𝜕𝜃

𝜕𝑥1
+ 𝜇Δ𝑢1 + 𝑘2𝑢1 = 0,

𝜃 =
𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢2
𝜕𝑥2

, 𝑘2 = 𝜌𝜔2,

(1.1)

(𝜆+ 𝜇)
𝜕𝜃

𝜕𝑥2
+ 𝜇Δ𝑢2 + 𝑘2𝑢2 = 0,

𝑥1, 𝑥2 ∈ Ω, Δ𝑢 =
𝜕2𝑢

𝜕𝑥21
+
𝜕2𝑢

𝜕𝑥22
.

Here 𝑢𝑛 (𝑥1, 𝑥2) are the components of the dis-
placement vectors at the point 𝑥1, 𝑥2 Ω, – the
area of the first quadrant 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝜆, 𝜇 –
Lame parameters, 𝜌 – the density of the mate-
rial of the deformable body, 𝜔 – the frequency
of external harmonic influences at the boundary,
set by the complex function exp (−𝑖𝜔𝑡), where
𝑡is the time. In a problem of the first kind, the
stress values at the boundaries of a square are
denoted on the abscissa axis by the functions
𝑋𝑥2𝑥1 (𝑥1, 0), 𝑌𝑥2𝑥1 (𝑥1, 0), and, 𝑋𝑥1𝑥2 (0, 𝑥2),
𝑌𝑥1𝑥2 (0, 𝑥2) – on the ordinate axis. Normal
to the boundary stresses are indicated by the
symbol 𝑋and tangents – Y. In a problem of the
second kind, the components of the displace-
ment vectors 𝑢1 (𝑥1, 0), 𝑢2 (𝑥1, 0) and 𝑢1 (0, 𝑥2),
𝑢2 (0, 𝑥2) are set at the boundary of the first
quadrant. The displacement 𝑢1 is directed along
the normal line to the border.

2. Solving a vector boundary value
problem using the direct block

element method

After plunging the boundary value prob-
lem into the topological space of slowly grow-
ing generalized functions [1], applying Fourier
transform F2 (𝛼1, 𝛼2) operators and an exter-
nal algebra algorithm, we arrive at a system of
functional equations that have the form in the
matrix representation

B (𝛼1, 𝛼2)U (𝛼1, 𝛼2) = 𝜔,

B (𝛼1, 𝛼2) = ‖𝑏𝑚𝑛‖ ,
𝑏11 = (𝜆+ 2𝜇)𝛼2

1 + 𝜇𝛼2
2 − 𝑘2,

𝑏12 = 𝑏21 = (𝜆+ 𝜇)𝛼1𝛼2,

𝑏22 = (𝜆+ 2𝜇)𝛼2
2 + 𝜇𝛼2

1 − 𝑘2,
U (𝛼1, 𝛼2) = {𝑈1 (𝛼1, 𝛼2) , 𝑈2 (𝛼1, 𝛼2)} .

Here the notation of the Fourier transform is
accepted

𝑈𝑛 (𝛼1, 𝛼2) = F2 (𝛼1, 𝛼2)𝑢𝑛 (𝑥1, 𝑥2)

=

∞∫︁

−∞

∫︁
𝑢𝑛 (𝑥1, 𝑥2) 𝑒

𝑖⟨𝛼x⟩𝑑𝑥1𝑑𝑥2,

⟨𝛼x⟩ = 𝛼1𝑥1 + 𝛼2𝑥2,

𝜔 (𝛼1, 𝛼2) = {𝜔1, 𝜔2} ,
𝜔1 (𝛼1, 𝛼2) = 𝜔11 (0, 𝛼2) + 𝜔12 (𝛼1, 0) ,

𝜔2 (𝛼1, 𝛼2) = 𝜔21 (𝛼1, 0) + 𝜔22 (0, 𝛼2) .
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The components of an external form 𝜔 (𝛼1, 𝛼2)
vector have notation

𝜔11 (0, 𝛼2) = −𝜎𝑥1𝑥1 (0, 𝛼2)

+ 𝑖 [(𝜆+ 2𝜇)𝛼1𝑈1 (0, 𝛼2) + 𝜇𝛼2𝑈2 (0, 𝛼2)] ,

𝜔22 (0, 𝛼2) = −𝜏𝑥1𝑥2 (0, 𝛼2)

+ 𝑖 [𝜇𝛼1𝑈2 (0, 𝛼2) + 𝜆𝛼2𝑈1 (0, 𝛼2)] ,

𝜔12 (𝛼1, 0) = −𝜏𝑥2𝑥1 (𝛼1, 0)

+ 𝑖 [𝜇𝛼2𝑈1 (𝛼1, 0) + 𝜆𝛼1𝑈2 (𝛼1, 0)] ,

𝜔21 (𝛼1, 0) = −𝜎𝑥2𝑥2 (𝛼1, 0)

+ 𝑖 [(𝜆+ 2𝜇)𝛼2𝑈2 (𝛼1, 0) + 𝜇𝛼1𝑈2 (𝛼1, 0)] .

Here 𝜎𝑥1𝑥1 (0, 𝛼2), 𝜎𝑥2𝑥2 (𝛼1, 0) are the Fou-
rier transform of the normal 𝑋𝑥1𝑥1 (0, 𝑥2),
𝑋𝑥2𝑥2 (𝑥1, 0) and 𝑌𝑥2𝑥1 (𝑥1, 0), 𝑌𝑥1𝑥2 (0, 𝑥2) –
tangential components of the stresses on the
boundary of the quadrant. The determinant of
the functional equation has the form

det𝐵 = 𝐵0

[︀
(𝜆+ 𝜇)

(︀
𝛼2
1 + 𝛼2

2

)︀
+𝐵0

]︀
,

𝐵0 = 𝜇(𝛼2
1 + 𝛼2

2)− 𝑘2.
Zeros for each parameter of the determinant are
represented in the form

𝛼11+ = 𝑖

√︁
𝛼2
2 − (𝜆+ 2𝜇)−1 𝑘2,

𝛼12+ = 𝑖
√︁
𝛼2
2 − 𝜇−1𝑘2,

𝛼21+ = 𝑖

√︁
𝛼2
1 − (𝜆+ 2𝜇)−1 𝑘2,

𝛼22+ = 𝑖
√︁
𝛼2
1 − 𝜇−1𝑘2.

To study the boundary value problem using the
block element method at the stage of external
analysis, it is necessary to perform differential
factorization of the matrix function and perform
the operation of constructing an automorphism.
For this purpose, taking into account the prop-
erties of the space of slowly growing generalized
functions, we construct a representation of the
solution of the matrix functional equation in
the form

U (𝛼1, 𝛼2) = B−1 (𝛼1, 𝛼2)𝜔 (𝛼1, 𝛼2) , (2.1)

B−1

=
1

detB

⃦⃦
⃦⃦(𝜆+ 𝜇)𝛼2

2 +𝐵0 − (𝜆+ 𝜇)𝛼1𝛼2

− (𝜆+ 𝜇)𝛼1𝛼2 (𝜆+ 𝜇)𝛼2
1 +𝐵0

⃦⃦
⃦⃦ .

In the future, you need to perform an auto-
morphism, which consists in the requirement of
turning the solution vector to zero outside the
carrier

F−1 (𝑥1, 𝑥2)B
−1 (𝛼1, 𝛼2)

× 𝜔 (𝛼1, 𝛼2) = 0, (2.2)

𝑥1, 𝑥2 /∈ Ω,

F−1 (𝑥1, 𝑥2) – inverse Fourier transform opera-
tor

For the correct implementation of automor-
phism, a differential factorization of the matrix
function is performed and the necessary selec-
tion of components of the vector of the external
form is made.

Matrix functions have the form

R𝑚𝑛 = (𝛼𝑚 − 𝛼𝑚𝑛+)−1

⃦⃦
⃦⃦𝛼𝑚 − 𝛼𝑚𝑛+ 0

1 𝐶𝑚𝑛

⃦⃦
⃦⃦ ,

𝐶11 (𝛼11+, 𝛼2) = −
𝑏11 (𝛼11+, 𝛼2)

𝑏21 (𝛼11+, 𝛼2)
,

𝐶12 (𝛼12+, 𝛼2) = −
𝑏11 (𝛼12+, 𝛼2)

𝑏21 (𝛼12+, 𝛼2)
,

𝐶21 (𝛼1, 𝛼21+) = −
𝑏11 (𝛼1, 𝛼21+)

𝑏21 (𝛼1, 𝛼21+)
,

𝐶22 (𝛼1, 𝛼22+) = −
𝑏11 (𝛼1, 𝛼22+)

𝑏21 (𝛼1, 𝛼22+)
.

In the problem of elasticity theory of the second
kind, displacement vectors are defined at the
boundaries of a square. As a result of fulfill-
ing the automorphism requirement, a system
of pseudo-differential equations is constructed,
which takes the form for the components of the
vector of the external form

− 𝜎𝑥1𝑥1 (0, 𝛼2)− 𝜏𝑥2𝑥1 (𝛼11+, 0)

+ 𝑖 [(𝜆+ 2𝜇)𝛼11+𝑈1 (0, 𝛼2) + 𝜇𝛼2𝑈2 (0, 𝛼2)]

+𝑖 [𝜇𝛼2𝑈1 (𝛼11+, 0) + 𝜆𝛼11+𝑈2 (𝛼11+, 0)] = 0,

− 𝜎𝑥1𝑥1 (0, 𝛼21+)− 𝜏𝑥2𝑥1 (𝛼1, 0)

+𝑖
[︀
(𝜆+ 2𝜇)𝛼1𝑈1 (0, 𝛼21+)+𝜇𝛼21+𝑈2 (0, 𝛼21+)

]︀

+ 𝑖 [𝜇𝛼21+𝑈1 (𝛼1, 0) + 𝜆𝛼1𝑈2 (𝛼1, 0)] = 0,

− 𝜎𝑥2𝑥2 (𝛼12+, 0)− 𝜏𝑥1𝑥2 (0, 𝛼2)

+𝑖
[︀
(𝜆+ 2𝜇)𝛼2𝑈2 (𝛼12+, 0)+𝜇𝛼12+𝑈2 (𝛼12+, 0)

]︀

+ 𝑖 [𝜇𝛼12+𝑈2 (0, 𝛼2) + 𝜆𝛼2𝑈1 (0, 𝛼2)] = 0,
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− 𝜎𝑥2𝑥2 (𝛼1, 0)− 𝜏𝑥1𝑥2 (0, 𝛼22+)

+ 𝑖 [(𝜆+ 2𝜇)𝛼22+𝑈2 (𝛼1, 0) + 𝜇𝛼1𝑈2 (𝛼1, 0)]

+𝑖 [𝜇𝛼1𝑈2 (0, 𝛼22+) + 𝜆𝛼22+𝑈1 (0, 𝛼22+)] = 0.

In the case of solving a boundary value problem
of the second kind, the displacement vectors
are given at the boundaries of the square, and
the stress components are unknown in pseudo-
differential equations. The system of pseudo-
differential equations, taking into account the
requirement (2.2), allows a solution in vector
form. As a result, external forms are repre-
sented as

𝜔1 (𝛼1, 𝛼2) = [𝑠1 (𝛼1, 𝛼2)− 𝑠1 (𝛼11+, 𝛼2)]

− [𝑠1 (𝛼1, 𝛼21+)− 𝑠1 (𝛼11+, 𝛼21+)] ,

𝜔2 (𝛼1, 𝛼2) = [𝑠2 (𝛼1, 𝛼2)− 𝑠2 (𝛼12+, 𝛼2)]

− [𝑠2 (𝛼1, 𝛼22+)− 𝑠2 (𝛼12+, 𝛼22+)] .

Here it is marked

𝑠1 (𝛼1, 𝛼2)

= 𝑖 [(𝜆+ 2𝜇)𝛼1𝑈1 (0, 𝛼2) + 𝜇𝛼2𝑈2 (0, 𝛼2)]

+ 𝑖 [𝜇𝛼2𝑈1 (𝛼1, 0) + 𝜆𝛼1𝑈2 (𝛼1, 0)] ,

𝑠2 (𝛼1, 𝛼2)

= 𝑖 [𝜇𝛼1𝑈2 (0, 𝛼2) + 𝜆𝛼2𝑈1 (0, 𝛼2)]

+ 𝑖 [(𝜆+ 2𝜇)𝛼2𝑈2 (𝛼1, 0) + 𝜇𝛼1𝑈1 (𝛼1, 0)] ,

𝑠1 (𝛼1, 𝛼2)− 𝑠1 (𝛼11+, 𝛼2)

= 𝑖 (𝜆+ 2𝜇) [𝛼1𝑈1 (0, 𝛼2)− 𝛼11+𝑈1 (0, 𝛼2)]

+ 𝑖𝜇 [𝛼2𝑈1 (𝛼1, 0)− 𝛼2𝑈1 (𝛼11+, 0)]

+ 𝜆 [𝛼1𝑈2 (𝛼1, 0)− 𝛼11+𝑈2 (𝛼11+, 0)] ,

𝑠2 (𝛼1, 𝛼22+)− 𝑠2 (𝛼12+, 𝛼22+)

= 𝜇 [𝛼1𝑈2 (0, 𝛼22+)− 𝛼12+𝑈2 (0, 𝛼22+)]

+ 𝑖𝜇 [𝛼1𝑈1 (𝛼1, 0)− 𝛼12+𝑈1 (𝛼12+, 0)]

+(𝜆+ 2𝜇) [𝛼22+𝑈2 (𝛼1, 0)− 𝛼22+𝑈2 (𝛼12+, 0)] .

The constructed solutions include components
of the displacement vector set at the quadrant
boundary. As a result of adding the constructed
solutions of pseudo-differential equations to the
right parts of the external forms in (2.1), we
obtain a representation of a packed vector block
element, which is an exact solution of the bound-
ary value problem for the Lame equations in
the first quadrant, in the form

u (𝑥1, 𝑥2)

= F−1 (𝑥1, 𝑥2)B
−1 (𝛼1, 𝛼2)𝜔 (𝛼1, 𝛼2) . (2.3)

3. Solving a vector boundary value
problem using solutions scalar

boundary value problems

It was noticed long ago that the Lame equa-
tions, both in static and dynamic cases, have
the property of representing the solution as the
sum of potential and vortex components. It has
been used in quite a large number of works, but
only in simple areas – half-space, layered envi-
ronment, and other areas obtained by represen-
tations of space transformation groups [5–10].

This is due to the fact that when decompos-
ing the solution into potential and vortex com-
ponents, it was not possible to perform such a
decomposition under boundary conditions. Ac-
cording to the authors, this paper makes some
progress in solving the problem of boundary
conditions in this approach.

Following [8], we take the decomposition
of the solution of the Lame equations in the
following form

𝑢1 (𝑥1, 𝑥2) = 𝜕1𝜑(𝑥1, 𝑥2) + 𝜕2𝜓(𝑥1, 𝑥2),

𝑢2 (𝑥1, 𝑥2) = 𝜕2𝜑(𝑥1, 𝑥2)− 𝜕1𝜓(𝑥1, 𝑥2),

𝜕1 =
𝜕

𝜕𝑥1
, 𝜕2 =

𝜕

𝜕𝑥2
.

(3.1)

Here it is marked

(︀
Δ− 𝑝21

)︀
𝜑 = 0,

(︀
Δ− 𝑝22

)︀
𝜓 = 0,

𝑝21 = 𝑘21(𝜆+ 2𝜇)−1, 𝑝22 = 𝑘21𝜇
−1,

𝜑(𝑥1, 0) = 𝑓1(𝑥1, 0),

𝜑(0, 𝑥2) = 𝑓2 (0, 𝑥2) ,

𝜓(𝑥1, 0) = 𝑔1(𝑥1, 0),

𝜓(0, 𝑥2) = 𝑔2(0, 𝑥2).

(3.2)

Functions 𝑓𝑚, 𝑔𝑚, 𝑚 = 1, 2 that are arbi-
trary under boundary conditions, satisfying only
the conditions of correctness of the statement
boundary value problem. In particular, they
can be taken from space slow-growing general-
ized functions that are searched for solutions to
the boundary value problem in the domain Ω.

We consider the case of the second-kind
Lame boundary value problem.

The following conditions are set on the co-
ordinate axes: 𝑢𝑛 (𝑥1, 0), 𝑢𝑛 (0, 𝑥2), 𝑛 = 1, 2.
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Thus, for solutions of the Helmholtz equa-
tion, boundary conditions of the form are
formed for 𝑥2 → 0

𝜕1𝜑(𝑥1, 𝑥2) + 𝜕2𝜓(𝑥1, 𝑥2) = 𝑢1(𝑥1, 0),

𝜕2𝜑(𝑥1, 𝑥2)− 𝜕1𝜓(𝑥1, 𝑥2) = 𝑢2(𝑥1, 0).
(3.3)

Similarly, when 𝑥1 → 0

𝜕1𝜑(𝑥1, 𝑥2) + 𝜕2𝜓(𝑥1, 𝑥2) = 𝑢1(0, 𝑥2),

𝜕2𝜑(𝑥1, 𝑥2)− 𝜕1𝜓(𝑥1, 𝑥2) = 𝑢2(0, 𝑥2).
(3.4)

The solution of the boundary value problem
for Lame equations with boundary conditions
(3.3), (3.4) requires the construction of solu-
tions to boundary value problems for Helmholtz
equations under arbitrary boundary conditions
(3.2). This can be done using the block ele-
ment method described in [1–4]. Examples of
solving various boundary value problems using
solutions of Helmholtz equations are available
in [11–19]. The solution of the boundary value
problem in the first quadrant, performed by the
block element method, is available in [20]. In
the Packed form in the first quadrant in the
case of the Dirichlet boundary value problem
the solutions have the form

𝜑(𝑥1, 𝑥2) =
1

4𝜋2

∫︁∫︁

𝑅2

𝜔1 (𝛼1, 𝛼2)

(𝛼2
1 + 𝛼2

2 − 𝑝21)

× 𝑒−𝑖(𝛼1𝑥1+𝛼2𝑥2)𝑑𝛼1𝑑𝛼2, (3.5)

𝜓(𝑥1, 𝑥2) =
1

4𝜋2

∫︁∫︁

𝑅2

𝜔2 (𝛼1, 𝛼2)

(𝛼2
1 + 𝛼2

2 − 𝑝22)

× 𝑒−𝑖(𝛼1𝑥1+𝛼2𝑥2)𝑑𝛼1𝑑𝛼2,

𝜔1 =

[︂
𝛼1

𝛼11+
− 1

]︂⟨
𝐹1(𝛼2)−

𝐹1(𝛼21+)𝛼2

𝛼21+

⟩

+

[︂
𝛼2

𝛼21+
− 1

]︂⟨
𝐹2(𝛼1)−

𝛼1𝐹2(𝛼11+)

𝛼11+

⟩
,

𝜔2 =

[︂
𝛼1

𝛼12+
− 1

]︂⟨
𝐺1(𝛼2)−

𝐺1(𝛼22+)𝛼2

𝛼22+

⟩

+

[︂
𝛼2

𝛼22+
− 1

]︂⟨
𝐺2(𝛼1)−

𝛼1𝐺2(𝛼12+)

𝛼12+

⟩
,

𝛼11+ = 𝑖
√︁
𝛼2
2 − 𝑝21, 𝛼21+ = 𝑖

√︁
𝛼2
1 − 𝑝21,

𝛼12+ = 𝑖
√︁
𝛼2
2 − 𝑝22, 𝛼22+ = 𝑖

√︁
𝛼2
1 − 𝑝22.

Sections for multi-valued functions are dic-
tated by the requirement to perform automor-
phisms [1]. According to the construction, the
properties (3.2) are valid for the given block
elements. Using them, we introduce the fol-
lowing notations for solutions of the Helmholtz
equations

𝜑(𝑥1, 𝑥2) ≡ 𝜑 [𝑥1, 𝑥2, 𝑓1(𝜉1, 0), 𝑓2(0, 𝜉2)]
→ 𝑓1(𝑥1, 0),

0 < 𝑥2 ≪ 1;

𝜑(𝑥1, 𝑥2) ≡ 𝜑 [𝑥1, 𝑥2, 𝑓1(𝜉1, 0), 𝑓2(0, 𝜉2)]
→ 𝑓2(0, 𝑥2),

0 < 𝑥1 ≪ 1;

𝜓(𝑥1, 𝑥2) ≡ 𝜓 [𝑥1, 𝑥2, 𝑔1(𝜉1, 0), 𝑔2(0, 𝜉2)]

→ 𝑔1(𝑥1, 0),

0 < 𝑥2 ≪ 1;

𝜓(𝑥1, 𝑥2) ≡ 𝜓 [𝑥1, 𝑥2, 𝑔1(𝜉1, 0), 𝑔2(0, 𝜉2)]

→ 𝑔2(0, 𝑥2),

0 < 𝑥1 ≪ 1.

These properties allow us to find a way to satisfy
the boundary conditions of the boundary value
problem for the Lame equations. Below, we will
denote the integrals of a function by variables
and first-order formulas and, respectively. So,
there are representations

𝜕
(−1)
1 𝑤(𝑥1, 𝑥2) =

𝑥1∫︁

0

𝑤(𝜉1, 𝑥2)𝑑𝜉1,

𝜕
(−1)
2 𝑤(𝑥1, 𝑥2) =

𝑥2∫︁

0

𝑤(𝑥1, 𝜉2)𝑑𝜉2.

(3.6)

Obviousle

𝜕1𝜕
(−1)
1 𝑤(𝑥1, 𝑥2) = 𝑤(𝑥1, 𝑥2),

𝜕2𝜕
(−1)
2 𝑤(𝑥1, 𝑥2) = 𝑤(𝑥1, 𝑥2).

When solving The considered vector lame equa-
tion in the region representing the first quad-
rant with two intersecting boundaries, only one
Packed block element of each boundary value
problem for the Helmholtz equation is not suffi-
cient to satisfy the boundary conditions. Each
block element is a solution of the Helmholtz
equations corresponding to the potential and
vortex component of the solutions. This was
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sufficient for solving the boundary value prob-
lem for the Lame equation in a half-space with
only one straight boundary, performed in [8]. It
turned out that in the case of a polygon area,
the number of block elements of scalar problems
should be taken in the number of straight frag-
ments that the boundary of the polygon area
contains. Thus, to describe the solution Lama’s
equations in the first quadrant, which contains
two straight fragments in the border, needed to
take two block elements each potential and vor-
tex components of the solution. Then the exact
solution of the second boundary value problem
for the Lame equation in the first quadrant is
represented as

𝑢1(𝑥1, 𝑥2)

= 𝜕1

⟨
𝜑1

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
1 𝑢1(𝜉1, 0),

1

2
𝜕
(−1)
1 𝑢1(0, 𝜉2)

+
1

2
𝜕
(−1)
1 𝐹 (𝜉2)

]︂
+ 𝜑2

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
2 𝑢2(𝜉1, 0)

+
1

2
𝜕
(−1)
1 𝐷(𝑥1),

1

2
𝜕−1
2 𝑢2(0, 𝜉2)

]︂⟩

+ 𝜕2

⟨
𝜓1

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
2 𝑢1(𝜉1, 0)

+
1

2
𝜕
(−1)
1 𝐶(𝑥1),

1

2
𝜕
(−1)
2 𝑢1(0, 𝜉2)

]︂

− 𝜓2

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
1 𝑢2(𝜉1, 0),

1

2
𝜕
(−1)
1 𝑢2(0, 𝜉2)

=
1

2
𝜕
(−1)
1 𝐸(𝑥2)

]︂⟩︀
; (3.7)

𝑢2(𝑥1, 𝑥2)

= 𝜕2

⟨
𝜑1

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
1 𝑢1(𝜉1, 0),

1

2
𝜕−1
1 𝑢1(0, 𝜉2)

+
1

2
𝜕
(−1)
2 𝐹 (𝜉2)

]︂
+ 𝜑2

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
2 𝑢2(𝜉1, 0)

+
1

2
𝜕
(−1)
2 𝐷(𝑥1),

1

2
𝜕−1
2 𝑢2(0, 𝜉2)

]︂⟩

− 𝜕1
⟨
𝜓1

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
2 𝑢1(𝜉1, 0)

+
1

2
𝜕
(−1)
2 𝐶(𝑥1),

1

2
𝜕
(−1)
2 𝑢1(0, 𝜉2)

]︂

− 𝜓2

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
1 𝑢2(𝜉1, 0),

1

2
𝜕
(−1)
1 𝑢2(0, 𝜉2)

+
1

2
𝜕
(−1)
2 𝐸(𝑥2)

]︂⟩
. (3.8)

Here, the functions 𝐶(𝑥2), 𝐷(𝑥1), 𝐸(𝑥2), 𝐹 (𝑥1)
have the representation

𝐶(𝑥1) = 𝜕2𝜕
(−1)
1 𝑢1(𝑥1, 0)− 𝜕1𝜕(−1)

2 𝑢1(𝑥1, 0),

𝐷(𝑥1) = 𝜕2𝜕
(−1)
1 𝑢2(𝑥1, 0)− 𝜕1𝜕(−1)

2 𝑢2(𝑥1, 0),

𝐸(𝑥2) = 𝜕1𝜕
(−1)
2 𝑢2(0, 𝑥2)− 𝜕2𝜕(−1)

1 𝑢2(0, 𝑥2),

𝐹 (𝑥1) = 𝜕1𝜕
(−1)
2 𝑢1(0, 𝑥2)− 𝜕2𝜕(−1)

1 𝑢1 (0, 𝑥2) .

It is easy to verify the validity of this statement
by direct verification. Indeed, each packed block
element, after applying the corresponding dif-
ferential operators of the Helmholtz equations,
takes the form

𝜑(𝑥1, 𝑥2) =
1

4𝜋2

∫︁∫︁

𝑅2

𝜔1 (𝛼1, 𝛼2)

× 𝑒−𝑖(𝛼1𝑥1+𝛼2𝑥2) d𝛼1 d𝛼2,

𝜓(𝑥1, 𝑥2) =
1

4𝜋2

∫︁∫︁

𝑅2

𝜔2 (𝛼1, 𝛼2)

× 𝑒−𝑖(𝛼1𝑥1+𝛼2𝑥2) d𝛼1 d𝛼.

The right parts turn to zero due to the regular-
ity of functions 𝜔1 (𝛼1, 𝛼2), 𝜔2 (𝛼1, 𝛼2), in the
domain Im𝛼1 < 0, Im𝛼2 < 0 and decreasing
exponential terms. The functions included in
formulas (3.7) and (3.8) satisfy the first equa-
tion (3.2), and the functions – the second, only
with different boundary conditions.

We show the implementation of the bound-
ary conditions.

Let us limit ourselves to the consideration
of the first boundary condition (3.7).

Using the above properties of packed block
elements, we have the following chain of rela-
tions for fragments of solution (3.7):

𝑢1(𝑥1, 𝑥2)

→ 𝜕1𝜑1

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
1 𝑢1(𝜉1, 0),

1

2
𝜕−1
1 𝑢1(0, 𝜉2)

+
1

2
𝜕
(−1)
1 𝐹1(𝜉2)

]︂

+ 𝜕2𝜓1

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
2 𝑢1(𝜉1, 0)

+
1

2
𝜕
(−1)
2 𝐶1(𝑥1),

1

2
𝜕
(−1)
2 𝑢1(0, 𝜉2)

]︂

→ 1

2
𝑢1(𝑥1, 0) +

1

2
𝑢1(𝑥1, 0) = 𝑢1(𝑥1, 0);

11
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𝜕1𝜑2

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
2 𝑢2(𝜉1, 0)

=
1

2
𝜕
(−1)
1 𝐷1(𝑥1),

1

2
𝜕−1
2 𝑢2(0, 𝜉2)

]︂

− 𝜕2𝜓2

[︂
𝑥1, 𝑥2,

1

2
𝜕
(−1)
1 𝑢2(𝜉1, 0),

1

2
𝜕
(−1)
1 𝑢2(0, 𝜉2)

+
1

2
𝜕
(−1)
2 𝐸1(𝑥2)

]︂

→ 𝜕1
1

2
𝜕
(−1)
2 𝑢2(𝑥1, 0) +

1

2
𝐷1(𝑥1)

− 𝜕2
1

2
𝜕
(−1)
1 𝑢2(𝑥1, 0)

→ 𝜕1
1

2
𝜕
(−1)
2 𝑢2(𝑥1, 0)− 𝜕2

1

2
𝜕
(−1)
1 𝑢2(𝑥1, 0)

+𝜕2
1

2
𝜕
(−1)
1 𝑢2(𝑥1, 0)−𝜕1

1

2
𝜕
(−1)
2 𝑢2(𝑥1, 0) = 0.

The satisfaction of the other boundary condi-
tions in (3.7), (3.8) is checked in exactly the
same way.

Conclusion

In this paper, the same plane boundary
value problem for The lame vector equation
in the first quadrant is solved by two different
approaches of the block element method. In the
first case, the solution is constructed by direct
application of the block element method to The
lame vector boundary value problem. In the
second case, a representation of the solution
of the Lame equation using solutions of scalar
Helmholtz equations is used. In both cases, ex-
act solutions of boundary value problems are
constructed for the first time. In the first case,
where the matrix-function factorization opera-
tion was required at some stage, the solution
is represented by a complex expression. In the
second case, it is presented

Fairly simple solutions to scalar problems.
Thus, it is shown that in cases where there is a
representation of solutions of vector using solu-
tions to scalar problems, it is advisable to use
this approach.
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