Численное нахождение границы предельных и сверхпредельных токов в полупроводящей электрической мембране

  • Кирий В.А. Кубанский государственный университет, Краснодар, Россия
  • Хасматулина Н.Ю. Кубанский государственный университет, Краснодар, Россия
  • Демёхин Е.А. Кубанский государственный университет, Краснодар, Россия
УДК: 532.517.013.4:537.2

Аннотация

Рассматривается один из физических механизмов перехода от предельных к сверхпредельным токам в электрической мембране: электрокинетическая неустойчивость. Численно найдена граница, разделяющая предельные и сверхпредельные режимы. Разработан новый численный метод решения задачи. Краевая задача на устойчивость описывается линеаризованной системой обыкновенных дифференциальных уравнений Нернста-Планка-Пуассона-Стокса с соответствующими краевыми условиями, которая после проекций на базисные функции сводится к обобщенной алгебраической задаче на собственные значения. Если одномерные положения равновесия, соответствующие предельным токам, неустойчивы, происходит смена режима и переход к сверхпредельным токам. При таком переходе два механизма переноса ионов, диффузии и электромиграции, дополняются третьим — адвекцией. Численные данные работы хорошо соответствуют аналитическим результатам для малых чисел Дебая.

Ключевые слова: численное моделирование, сверхпредельные токи, электрокинетическая неустойчивость

Информация об авторах

Владимир Александрович Кирий
аспирант кафедры вычислительной математики и информатики Кубанского государственного университета
e-mail: vladimir@kiriy.ru
Наталья Юрьевна Хасматулина
магистрант факультета компьютерных технологий и прикладной математики Кубанского государственного университета
e-mail: n.khasmatulina@gmail.com
Евгений Афанасьевич Демёхин
д-р физ.-мат. наук, профессор кафедры вычислительной математики и информатики Кубанского государственного университета
e-mail: edemekhi@gmail.com

Литература

  1. Левич В.Г. Физико-химическая гидродинамика. М.: Физматлит, 1959. 316 c.
  2. Rubinstein I., Shtilman L. Voltage against current curves of cation exchange membranes // J. Chem. Soc. Faraday Trans. II. 1979. No 75. P. 231-246.
  3. Заболоцкий И.И., Никоненко В.В. Перенос ионов в мембранах. М.: Наука, 1996. 392 c.
  4. Уртенов М.Х., Сеидов Р.Р. Математические модели электромембранных систем очистки воды. Краснодар: КубГУ, 2000. 140 c.
  5. Уртенов М.Х., Никоненко В.В. Анализ решения краевой задачи для уравнений Нернста-Планка-Пуассона: Случай 1:1 электролита // Электрохимия. 1993. Т. 29. №2. С. 239-245.
  6. Nikonenko V.V., Kovalenko A., Urtenov M.H., Pismenskaya N.D., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives // Desalination. 2014. No 342. P. 85-106.
  7. Rubinstein S.M., Manukyan G., Staicu A., Rubinstein I., Zaltman B., Lammertink R.G.H., Nagele F., Wessling M. Direct observation of nonequilibrium electroosmotic instability // Phys. Rev. Lett. 2008. \No101. P. 236101.
  8. Zaltzman B., Rubinstein I. Electroosmotic slip and electroconvective instability // Fluid Mech. 2007. No 579. p. 173-226.
  9. Demekhin E.A., Shelistov V.S., Polyanskikh S.V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability // Phys. Rev. E. 2011. No 84. P. 036318.
  10. Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux // Annu. Rev. Fluid Mech. 2012. No 44. P. 401-426.

Финансирование

Работа была частично финансирована грантами РФФИ (12-08-00924-а, 14-08-00789-а и 14-08-01171-а).

Выпуск
Страницы
31-37
Прислано
2014-09-04
Опубликовано
2014-09-29

Наиболее читаемые статьи этого автора (авторов)