About the features of the wavelet spectrum as a flat image feature space for statistical pattern recognition methods

Authors

  • Goronkov K.A. Kuban State Technological University, Krasnodar, Russian Federation
  • Usatikov S.V. Kuban State Technological University, Krasnodar, Russian Federation

UDC

004.931:664

EDN

PYTQAF

Abstract

The methods of identification with a given accuracy of the mass of objects of natural origin, with high intraclass variability of the visual, the proximity of the classes themselves are considered. In particular, the problems of rapid diagnosis of latent infection of grain by insects in bulk grain and legumes. Theoretical and experimental studies with a variety of statistical classifier that uses pattern recognition algorithm to construct the ellipsoid scattering in the feature space (with a normal distribution), and the degeneracy of the covariance matrix characteristics and features of the spectrum of the wavelet feature space for expansion, were held. Proposed use of the degeneracy of the covariance matrix of the wavelet spectrum of a flat image to improve recognition.

Keywords:

statistical methods for pattern recognition, wavelet spectrum, diagnosis of hidden insect infestation of grains and legumes

Funding information

Работа выполнена при финансовой поддержке Российского Фонда фундаментальных исследований и администрации Краснодарского края (11-08-96519-р_юг_ц).

Authors info

  • Konstantin A. Goronkov

    аспирант кафедры общей математики Кубанского государственного технологического университета

  • Sergey V. Usatikov

    д-р физ.-мат. наук, профессор кафедры общей математики Кубанского государственного технологического университета

References

  1. Choudhary R., Paliwal J., Jayas D.S., Ridgway C., Chambers J. Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images // Biosystems Engineering. 2008. Vol. 99. Iss. 3. P. 330-337.
  2. Choudhary R., Mahesh S., Paliwal J., Jayas D.S. Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples // Biosystems Engineering. 2009. Vol. 102. Iss. 2. P. 115-127.
  3. Горонков К.А., Руденко О.В., Усатиков С.В. О точности распознавания по контуру изображений злаковых культур при помощи нейронных сетей // Обозрение прикладной и промышленной математики. 2009. Т. 16. Вып. 3. С. 567-569.
  4. Горонков К.А., Руденко О.В., Усатиков C.В. База данных обучающей выборки для высокоточного распознавания плоских изображений сортов злаковых и масличных культур // Фундаментальные исследования. 2011. Вып. 8. Ч. 2. С. 342-346.
  5. Singh C.B., Jayas D.S., Paliwal J., White N.D.G. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging // Journal of Stored Products Research. 2009. Vol. 45. Iss. 3. P. 151-158.
  6. Chandra B. Singh, Digvir S. Jayas, Jitendra Paliwal, Noel D. G. White Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging // Computers and Electronics in Agriculture. 2010. Vol. 73. Iss. 2. P. 118-125.

Downloads

Download data is not yet available.

Issue

Pages

24-31

Section

Article

Dates

Submitted

June 17, 2012

Accepted

October 11, 2012

Published

March 29, 2013

How to Cite

[1]
Goronkov, K.A., Usatikov, S.V., About the features of the wavelet spectrum as a flat image feature space for statistical pattern recognition methods. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2013, № 1, pp. 24–31.

Similar Articles

1-10 of 1092

You may also start an advanced similarity search for this article.