On the thermodynamical equilibrium conditions in the problem of bending of a two-phase plate
UDC
539.3Abstract
We present some recent results of solving static problems of bending of elastic plates with phase transitions. We assume that the plate consists of two phases separated by a smooth curve. The deformation of the plate is described by the vertical displacement $w$ and the position of the curve separating the material phases. The weak formulation is used based on the minimal principle of total energy of a plate. The balance equations along the phase interface are deduced. These equations contain the additional balance relation, which is necessary to determine the position of the phase interface.
Funding information
Работа выполнена при поддержке РФФИ (07-01-00525) и Фонда содействия отечественной науке.
References
- Bhattacharya K., James R.D. A theory of thin films of martensitic materials with applications to microactuators // J. Mech. Phys. Solids. 1999. Vol. 36. P. 531-576.
- James R.D., Rizzoni R. Pressurized shape memory thin films // J. Elasticity. 2000. Vol. 59. P. 399-436.
- Feng P., Sun Q.P. Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force // J. Mech. Phys. Solids. 2006. Vol. 54. P. 1568-1603.
- Pieczyska E. A., Tobushi H., Gadaj S. P., Nowacki W. K. Superelastic deformation behaviors based on phase transformation bands in TiNi shape memory alloy // Materials Trans. 2006. Vol. 47. No 3. P. 670-676.
- Eremeyev V. A., Pietraszkiewicz W. The nonlinear theory of elastic shells with phase transitions // J. Elasticity. 2004. Vol. 74. No 1. P. 67-86.
- Pietraszkiewicz W., Eremeyev V. A., Konopińska V. Extended non-linear relations of elastic shells undergoing phase transitions // ZAMM. 2007. Vol. 87. No 2. P. 150-159.
- Гринфельд М.А. Методы механики сплошных сред в теории фазовых превращений. М.: Наука. 1990. 312 с.
- Осмоловский В.Г. Вариационная задача о фазовых переходах в механике сплошной среды. С.-Пб.: Изд-во СПб ун-та, 2000. 262 c.
- Bhattacharya K., Kohn R.V. Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials // Arch. Rational Mech. Anal. 1997. Vol. 139. P. 99-180.
- Тимошенко С. П., Войновский-Кригер С. Пластинки и оболочки. М.: Наука, 1966. 624 с.
- Еремеев В.А., Фрейдин А.В., Шарипова Л.Л. Об устойчивости равновесия двухфазных упругих тел // ПММ. 2007. Т. 71. Вып. 1. С. 66-92.
- Maugin G.A. Material inhomogeneities in elasticity. London et al.: Chapman Hall, 1993. 276 p.
- Gurtin M.E. Configurational forces as basic concepts of continuum physics. Berlin et al.: Springer-Verlag, 2000. 249 p.
- Kienzler R., Herrmann G. Mechanics in material space with applications to defect and fracure mechanics. Berlin et al.: Springer-Verlag, 2000. 299 p.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2007 Еремеев В.А., Макарьев А.И.
This work is licensed under a Creative Commons Attribution 4.0 International License.