On the thermodynamical equilibrium conditions in the problem of bending of a two-phase plate

Authors

  • Eremeyev V.A. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation
  • Makaryev A.I. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Russian Federation

UDC

539.3

Abstract

We present some recent results of solving static problems of bending of elastic plates with phase transitions. We assume that the plate consists of two phases separated by a smooth curve. The deformation of the plate is described by the vertical displacement $w$ and the position of the curve separating the material phases. The weak formulation is used based on the minimal principle of total energy of a plate. The balance equations along the phase interface are deduced. These equations contain the additional balance relation, which is necessary to determine the position of the phase interface.

Funding information

Работа выполнена при поддержке РФФИ (07-01-00525) и Фонда содействия отечественной науке.

Author info

  • Viktor A. Eremeyev

    д-р физ.-мат. наук, зав. лабораторией механики активных материалов Южного научного центра РАН

  • Anton I. Makaryev

    младший научный сотрудник НИИ физики Южного федерального университета

References

  1. Bhattacharya K., James R.D. A theory of thin films of martensitic materials with applications to microactuators // J. Mech. Phys. Solids. 1999. Vol. 36. P. 531-576.
  2. James R.D., Rizzoni R. Pressurized shape memory thin films // J. Elasticity. 2000. Vol. 59. P. 399-436.
  3. Feng P., Sun Q.P. Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force // J. Mech. Phys. Solids. 2006. Vol. 54. P. 1568-1603.
  4. Pieczyska E. A., Tobushi H., Gadaj S. P., Nowacki W. K. Superelastic deformation behaviors based on phase transformation bands in TiNi shape memory alloy // Materials Trans. 2006. Vol. 47. No 3. P. 670-676.
  5. Eremeyev V. A., Pietraszkiewicz W. The nonlinear theory of elastic shells with phase transitions // J. Elasticity. 2004. Vol. 74. No 1. P. 67-86.
  6. Pietraszkiewicz W., Eremeyev V. A., Konopińska V. Extended non-linear relations of elastic shells undergoing phase transitions // ZAMM. 2007. Vol. 87. No 2. P. 150-159.
  7. Гринфельд М.А. Методы механики сплошных сред в теории фазовых превращений. М.: Наука. 1990. 312 с.
  8. Осмоловский В.Г. Вариационная задача о фазовых переходах в механике сплошной среды. С.-Пб.: Изд-во СПб ун-та, 2000. 262 c.
  9. Bhattacharya K., Kohn R.V. Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials // Arch. Rational Mech. Anal. 1997. Vol. 139. P. 99-180.
  10. Тимошенко С. П., Войновский-Кригер С. Пластинки и оболочки. М.: Наука, 1966. 624 с.
  11. Еремеев В.А., Фрейдин А.В., Шарипова Л.Л. Об устойчивости равновесия двухфазных упругих тел // ПММ. 2007. Т. 71. Вып. 1. С. 66-92.
  12. Maugin G.A. Material inhomogeneities in elasticity. London et al.: Chapman Hall, 1993. 276 p.
  13. Gurtin M.E. Configurational forces as basic concepts of continuum physics. Berlin et al.: Springer-Verlag, 2000. 249 p.
  14. Kienzler R., Herrmann G. Mechanics in material space with applications to defect and fracure mechanics. Berlin et al.: Springer-Verlag, 2000. 299 p.

Downloads

Download data is not yet available.

Issue

Pages

56-60

Section

Mechanics

Dates

Submitted

June 19, 2007

Accepted

June 20, 2007

Published

June 30, 2007

How to Cite

[1]
Eremeyev, V.A., Makaryev, A.I., On the thermodynamical equilibrium conditions in the problem of bending of a two-phase plate. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2007, № 2, pp. 56–60.