Particle transport method for linear problem of convective transport

Authors

  • Smolyansky A. University of Zurich, Zurich, Switzerland
  • Shipilova O. Rostov State University, Rostov-on-Don, Russian Federation
  • Haario H. Lappeenranta University of Technology, Lappeenranta, Finland
  • Korotkaya Z. Rostov State University, Rostov-on-Don, Russian Federation

UDC

519.6

Abstract

The paper is devoted to a novel explicit technique, the Particle Transport Method (PTM), used to solve linear convection problems. While being a Lagrangian (characteristic based) method, PTM has the advantage of Eulerian methods to represent the solution on a fixed mesh. The proposed approach belongs to the class of monotone high-resolution numerical schemes, possesses the property of unconditional stability and can be equally applied with success on structured and unstructured meshes. It is also demonstrated that the method has the linear computational complexity.
The performance of the presented algorithm is tested using three classical problems. The first two problems are the wave-packet and step-function transport, the third problem is the rigid-body rotation of a slotted cylinder.

Funding information

Работа выполнена при финансовой поддержке Национального Ведомства Технических и Прикладных Наук Финляндии (Tekes, National Technology Agency of Finland).

Author info

  • Anton Smolyansky

    PhD, старший ассистент Математического института Цюрихского университета

  • Olga Shipilova

    аспирант кафедры прикладной математики Ростовского государственного университета

  • Heikki Haario

    профессор Технологического университета Лаппеенранты

  • Zhanna Korotkaya

    аспирант кафедры прикладной математики Ростовского государственного университета

References

  1. Donea J., Huerta A. Finite Element Methods For Flow Problems. Wiley: Chichester, cop. 2003. 352 p.
  2. Löhner R. Applied CFD Techniques: An Introduction Based on FEM. John Wiley and Sons, 2002. 376 p.
  3. Hansbo P. A Free-Lagrangian Finite Elemnt Method Using Space-Time Elements // Comput. Methods Appl. Mech. Engrg. 2000. Vol. 188. P. 347-361.
  4. Iske A., Käser M. Conservative Semi-Lagrangian Advection on Adaptive Unstructured Meshes // Num. Methods Partial Differential Eq. 2004. Vol. 20. P. 388-411.
  5. Марчук Г.И. Метод "расщепления" для решения задач математической физики // Численные методы решения задач механики сплошных сред. М., 1969. С. 66-84.
  6. Jameson A. Analysis and Design of Numerical Schemes for Gas Dynamics 1. Artificial Diffusion, Upwind biasing, Limiters and Their Effect On Accuracy and Multigrid Convergance // Int. J. of Computational Fluid Dynamics. 1995. Vol. 4. P. 171-218.

Downloads

Download data is not yet available.

Downloads

Issue

Pages

18-23

Section

Mechanics

Dates

Submitted

September 5, 2004

Accepted

September 28, 2004

Published

December 27, 2004

How to Cite

[1]
Smolyansky, A., Shipilova, O., Haario, H., Korotkaya, Z., Particle transport method for linear problem of convective transport. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2004, № 4, pp. 18–23.