Particle transport method for linear problem of convective transport
UDC
519.6Abstract
The paper is devoted to a novel explicit technique, the Particle Transport Method (PTM), used to solve linear convection problems. While being a Lagrangian (characteristic based) method, PTM has the advantage of Eulerian methods to represent the solution on a fixed mesh. The proposed approach belongs to the class of monotone high-resolution numerical schemes, possesses the property of unconditional stability and can be equally applied with success on structured and unstructured meshes. It is also demonstrated that the method has the linear computational complexity.
The performance of the presented algorithm is tested using three classical problems. The first two problems are the wave-packet and step-function transport, the third problem is the rigid-body rotation of a slotted cylinder.
Funding information
Работа выполнена при финансовой поддержке Национального Ведомства Технических и Прикладных Наук Финляндии (Tekes, National Technology Agency of Finland).
References
- Donea J., Huerta A. Finite Element Methods For Flow Problems. Wiley: Chichester, cop. 2003. 352 p.
- Löhner R. Applied CFD Techniques: An Introduction Based on FEM. John Wiley and Sons, 2002. 376 p.
- Hansbo P. A Free-Lagrangian Finite Elemnt Method Using Space-Time Elements // Comput. Methods Appl. Mech. Engrg. 2000. Vol. 188. P. 347-361.
- Iske A., Käser M. Conservative Semi-Lagrangian Advection on Adaptive Unstructured Meshes // Num. Methods Partial Differential Eq. 2004. Vol. 20. P. 388-411.
- Марчук Г.И. Метод "расщепления" для решения задач математической физики // Численные методы решения задач механики сплошных сред. М., 1969. С. 66-84.
- Jameson A. Analysis and Design of Numerical Schemes for Gas Dynamics 1. Artificial Diffusion, Upwind biasing, Limiters and Their Effect On Accuracy and Multigrid Convergance // Int. J. of Computational Fluid Dynamics. 1995. Vol. 4. P. 171-218.
Downloads
Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2004 Смолянский А., Шипилова О., Хаарио Х., Короткая Ж.
This work is licensed under a Creative Commons Attribution 4.0 International License.