On transformations of systems of integral equations for a multicomponent nano particle lying on a deformable layer under vibration conditions

Authors

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-19-4-27-36

Abstract

In the work, by applying a universal modeling method, the systems of Wiener-Hopf integral equations are reduced to infinite systems of linear algebraic equations. Systems of Wiener-Hopf integral equations of finite order arise in mixed problems of continuum mechanics for modeling multicomponent nanoparticles on a layered deformable medium of finite thickness. Galerkin transformations are carried out, which turn out to be possible due to the fact that the matrix-function of the transformation of the kernel of the system of integral equations has meromorphic elements. As a result of transformations, the system of integral equations is reduced to infinite systems of linear algebraic equations, the research methods and solutions of which are developed by the authors and will be applied to the constructed infinite systems of algebraic equations.

Keywords:

multicomponent nanoparticles, systems of integral equations, Galerkin transformations

Acknowledgement

The work was supported by the Russian Science Foundation (project 22-21-00128).

Author Infos

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, заведующий кафедрой математического моделирования Кубанского государственного университета

e-mail: babeshko41@mail.ru

Olga V. Evdokimova

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательской части Кубанского государственного университета

e-mail: evdokimova.olga@mail.ru

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Marina V. Zaretskaya

д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: zarmv@mail.ru

Ilya S. Telyatnikov

канд. физ.-мат. наук, научный сотрудник научно-исследовательской части Кубанского государственного университета

e-mail: ilux_t@list.ru

Dmitry A. Snetkov

инженер Научно-исследовательской части Кубанского государственного университета

e-mail: dimons3s@yandex.ru

Olga A. Grishko

студентка магистратуры факультета компьютерных технологий и математики Кубанского государственного университета

e-mail: o_grishko@mail.ru

References

  1. Freund, L.B., Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, 1998.
  2. Ворович, И.И., Александров, В.М., Бабешко, В.А., Неклассические смешанные задачи теории упругости. Наука, Москва (1974). [Vorovich I.I., Aleksandrov, V.M., Babeshko, V.A., Neklassicheskie smeshannye zadachi teorii uprugosti = Nonclassical mixed problems of elasticity theory. Nauka, Moscow, 1974. (in Russian)]
  3. Ворович, И.И., Бабешко, В.А., Пряхина, О.Д., Динамика массивных тел и резонансные явления в деформируемых средах. Наука, Москва (1999). [Vorovich, I.I., Babeshko, V.A., Pryakhina, O.D., Dinamika massivnykh tel i rezonansnye yavleniya v deformiruemykh sredakh = Dynamics of massive bodies and resonance phenomena in deformable media. Nauka, Moscow, 1999. (in Russian)]
  4. Храпков, А.А., Решения задач в замкнутой формы об упругом равновесии бесконечного клина с несимметричной выемкой на вершине. ПММ, 1971, т. 35, с. 1009–1016. [Khrapkov, A.A., Solutions of problems in closed form on the elastic equilibrium of an infinite wedge with an asymmetric notch at the top. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 1971, vol. 35, pp. 1009–1016. (in Russian)]
  5. Achenbach, J.D., Wave propagation in Elastic Solids. North-Holland Series in Applied Mathematics and Mechanics. North-Holland, Amsterdam, 1973.
  6. Ворович, И.И., Бабешко, В.А., Динамические смешанные задачи теории упругости для неклассических областей. Наука, Москва, 1979. [Vorovich, I.I., Babeshko, V.A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey = Dynamic mixed problems of elasticity theory for nonclassical domains. Nauka, Moscow, 1979. (in Russian)]
  7. Бабешко, В.А., Глушков, Е.В., Зинченко, Ж.Ф., Динамика неоднородных линейно-упругих сред. Наука, Москва, 1989. [Babeshko, V.A., Glushkov, E.V., Zinchenko, Zh.F., Dinamika neodnorodnykh lineyno-uprugikh sred = Dynamics of inhomogeneous linear elastic media. Nauka, Moscow, 1989. (in Russian)]
  8. Abrahams, I.D., Wickham, G.R., General Wiener-Hopf factorization matrix kernels with exponential phase factors. SIAM J. Appl. Math., 1990, vol. 50, pp. 819–838. DOI 10.1137/0150047
  9. Norris, A.N., Achenbach, J.D., Elastic wave diffraction by a semi infinite crack in a transversely isotropic material. Q. J. Apple. Math. Mech., 1984, vol. 37, pp. 565–580. DOI 10.1093/qjmam/37.4.565
  10. Sautbekov, S., Nilsson, B., Electromagnetic scattering theory for gratings based on the Wiener-Hopf method. AIP Conf. Proc., 2009, vol. 1106, pp. 110–117. DOI 10.1063/1.3117085
  11. Нобл, Б.: Метод Винера-Хопфа. ИЛ, Москва, 1962. [Noble B. Metod Vinera-Khopfa = Wiener-Hopf method. Inostrannaya literatura, Moscow, 1962. (in Russian)]
  12. Chakrabarti, A., George, A.J., Solution of a singular integral equation involving two intervals arising in the theory of water waves. Appl. Math. Lett., 1994, vol. 7, pp. 43–47. DOI 10.1016/0893-9659(94)90070-1
  13. Davis, A.M.J., Continental shelf wave scattering by a semi-infinite coastline. Geophys. Astrophys. Fluid Dyn., 1987, vol. 39, pp. 25–55. DOI 10.1080/03091928708208804
  14. Payandeh Najafabadi, A.T., Kucerovsky, D., Exact solutions for a class matrix Riemann-Hilbert problems. IMA J. of Appl. Math., 2014, vol. 79, pp. 109–123. DOI 10.1093/imamat/hxs044
  15. Эскин, Г.И., Краевые задачи для эллиптических псевдодифференциальных уравнений. Наука, Москва (1973). [Eskin, G.I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsial'nykh uravneniy = Boundary value problems for elliptic pseudo-differential equations. Nauka, Moscow, 1973. (in Russian)]
  16. Бабешко, В.А., Обобщенный метод факторизации в пространственных динамических смешанных задачах теории упругости. Наука, Москва, 1984. [Babeshko, V.A., Obobshchennyj metod faktorizacii v prostranstvennyh dinamicheskih smeshannyh zadachah teorii uprugosti = Generalized method of factorization in spatial dynamic mixed problems of elasticity theory. Nauka, Moscow, 1984. (in Russian)]
  17. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., The Hilbert-Wiener factorization problem and block element method. Doklady Physics, 2014, vol. 59, no. 12, pp. 591–595. DOI 10.1134/S1028335814120052
  18. Гахов, Ф.Д., Краевые задачи. Наука, Москва (1977). [Gakhov, F.D., Kraevye zadachi = Boundary value problems. Nauka, Moscow (1977). (in Russian)]
  19. Мусхелишвили, Н.И., Сингулярные интегральные уравнения. Наука, Москва (1962). [Muskhelishvili, N.I., Singulyarnye integral'nye uravneniya = Singular integral equation. Nauka, Moscow (1962). (in Russian)]
  20. Гохберг, И.Ц., Крейн, М.Г., Системы интегральных уравнений на полупрямой, с ядрами, зависящие от разности аргументов. Успехи математических наук, 1958, т. 13, вып. 2, с. 3–72. [Gokhberg, I.Ts., Krein, M.G., Systems of integral equations on the half-line, with kernels, depending on the difference of the arguments. Uspekhi matematicheskikh nauk = Russian Mathematical Surveys, 1958, vol. 13, iss. 2, pp. 3–72. (in Russian)]
  21. Hilbert, D., Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig-Berlin, 1924.
  22. Wiener, N., Hopf, E., Über eine Klasse singulärer Integralgleichungen. In S.B. Preuss. Akad. Wiss., Akademie der Wissenschaften, Berlin, 1931, p. 696–706.
  23. Idemen, M., A new method to obtain exact solutions of vector Wiener-Hopf equations. ZAMM, 1979, vol. 59, pp. 656–658.
  24. Litvinchuk, G.S., Spitkoskii, I.M., Factorization of measurable matrix functions. Boston, Birkhäuser Verlag Basel, 1987.
  25. Адуков, В.М., Факторизация Винера-Хопфа мероморфных матриц-функций. Алгебра и анализ, 1992, т. 4, вып. 1, pp. 54–74. [Adukov, V.M., Wiener-Hopf factorization of meromorphic matrix functions. Algebra i analiz = Algebra and Analysis, 1992, vol. 4, no. 1, pp. 54–74. (in Russian)]
  26. Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Фрактальные свойства блочных элементов и новый универсальный метод моделирования. ДАН, 2021, т. 499, с. 21–26. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk = Reports of the Academy of Sciences, 2021, vol. 499, pp. 21–26. (in Russian)] DOI 10.31857/S2686740021040039
  27. Мандельброт, Б., Фрактальная геометрия природы. Институт компьютерных исследований, Москва, 2002. [Mandelbrot, B., Fraktal'naya geometriya prirody = The Fractal Geometry of Nature. Institute for Computer Research, Moscow, 2002. (in Russian)]
  28. Маркушевич, А.И., Теория аналитических функций. Т. 2. Наука, Москва, 1968. [Markushevich, A.I., Teoriya analiticheskikh funktsiy = Theory of analytic functions. Vol. 2. Nauka, Moscow, 1968. (in Russian)]

Issue

Section

Mechanics

Pages

27-36

Submitted

2022-11-15

Published

2022-11-30

How to Cite

Babeshko V.A., Evdokimova O.V., Babeshko O.M., Zaretskaya M.V., Telyatnikov I.S., Snetkov D.A., Grishko O.A. On transformations of systems of integral equations for a multicomponent nano particle lying on a deformable layer under vibration conditions. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2022, vol. 19, no. 4, pp. 27-36. DOI: https://doi.org/10.31429/vestnik-19-4-27-36 (In Russian)