GazIn1-zPxAsySb1-x-y/InSb heterostructures for thermophotovoltaic converters

Authors

  • Lunina M.L. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation ORCID 0000-0002-9900-3767
  • Lunin L.S. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don; North-Caucasian Federal University, Stavropol, Russian Federation ORCID 0000-0002-5534-9694
  • Pashchenko A.S. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don; North-Caucasian Federal University, Stavropol, Russian Federation ORCID 0000-0002-7976-9597
  • Donskaya A.V. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russian Federation ORCID 0000-0002-0548-9517
  • Stolyarov M.S. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russian Federation ORCID 0009-0001-1524-4935

UDC

538.958

DOI:

https://doi.org/10.31429/vestnik-20-2-63-69

Abstract

The GaInPAsSb solid solution is used to create optoelectronic devices in the visible and IR spectral ranges. A necessary condition for increasing the efficiency of thermophotoelectric converters is a high degree of crystallographic perfection of heterostructures. However, the preparation of GaInPAsSb solid solutions is associated with a number of difficulties. It has wide areas of immiscibility, a high probability of the formation of non-stoichiometric compositions. The aim of this work is to grow GaInPAsSb/InSb heterostructures with high photoluminescent characteristics. GaInPAsSb/InSb heterostructures were grown by the method of zone recrystallization with a temperature gradient in the temperature range 753-873 K, determined from the study of liquidus temperatures. The manufacturing technique consists in the crystallization of a solution-melt of pure In, Ga, P, Sb, As components on an InSb substrate. A liquid zone with a thickness of 20-150 nm replenishment of liquid phase InPSbAs polycrystalline to create a uniform distribution of components over the thickness of the epitaxial layer. Based on the analysis of "liquid-solid" phase equilibria within the framework of the simple solution model, the technological parameters of the heteroepitaxial growth of GaInPAsSb solid solutions in the composition range $0.01\le x\le 0.30$, $0.01\le y\le 0.45$, $0.01\le z\le 0.60$. With an increase in the concentration of phosphorus in the solid solution, the mismatch in the lattice periods of the layer and substrate $\delta a$ increases. However, the mismatch between the lattice periods of the substrate and the solid solution layer by a value of $\delta a\ge 0.0$% causes stresses at the heterointerface, which prevent spinodal decomposition, increasing the region of existence of GaInPAsSb solutions. The photoluminescence spectra of GaInAsSb/InSb and GaInPAsSb/InSb heterostructures are compared with the active region in the layer. It is shown that the addition of phosphorus to GaInAsSb leads to an increase in the intensity and a decrease in the emission bandwidth at half the height of the peaks. This indicates an improvement in the crystalline properties of the films. As a result, the use of five-component GaInPAsSb solid solutions as the active area of thermophotoelectric converters makes it possible to increase the external quantum efficiency to 0.95 in the spectral range 2700-4700 nm.

Keywords:

heterostructures, band gap, spinodal decomposition, photoluminescence, spectral characteristics

Acknowledgement

Growth of experimental samples and calculations of spinodal decomposition were carried out within the framework of the state task of the Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences No. 122020100254-3. The spectral characteristics were measured using the resources of the North Caucasus Federal University and with the financial support of the Russian Ministry of Education and Science, unique project identifier RF-2296.61321X0029 (agreement No. 075-15-2021-687).

Author Infos

Marina L. Lunina

канд. физ.-мат. наук, ведущий научный сотрудник лаборатории физики и технологии наногетероструктур для СВЧ-электроники и фотоники Южного научного центра РАН

e-mail: marluna14@mail.ru

Leonid S. Lunin

д-р физ.-мат. наук, главный научный сотрудник, профессор лаборатории физики и технологии наногетероструктур для СВЧ-электроники и фотоники Южного научного центра РАН; главный научный сотрудник НОЦ фотовольтаики и нанотехнологий Северо-Кавказского федерального университета

e-mail: lunin_ls@mail.ru

Alexander S. Pashchenko

канд. физ.-мат. наук, ведущий научный сотрудник лаборатории физики и технологии наногетероструктур для СВЧ-электроники и фотоники Южного научного центра РАН; старший научный сотрудник НОЦ фотовольтаики и нанотехнологий Северо-Кавказского федерального университета

e-mail: as.pashchenko@gmail.com

Alina V. Donskaya

аспирант, ассистент кафедры физики и фотоники Южно-Российского государственного политехнического университета (НПИ) им. М.И. Платова

e-mail: alina_donskaya.8@mail.ru

Michael S. Stolyarov

аспирант, ассистент кафедры физика и фотоника Южно-Российского государственного политехнического университета (НПИ) им. М.И. Платова

e-mail: dochow@mail.ru

References

  1. Malevskaya, A.V., Kalyuzhnyy, N.A., Malevskii, D.A., Mintairov, S.A., Nakhimovich, M.V., Soldatenkov, F.Y., Shvarts, M.Z., Andreev, V.M., Nadtochiy, A.M., Infrared (850 nm) light-emitting diodes with multiple InGaAs quantum wells and "back" reflector. Semiconductors, 2021, vol. 55, pp. 686–690. DOI: 10.1134/S1063782621080121
  2. Малевская, А.В., Калюжный, Н.А., Минтаиров, С.А., Салий, Р.А., Малевский, Д.А., Нахимович, М.В., Ларионов, В.Р., Покровский, П.В., Шварц, М.З., Андреев, В.М., Высокоэффективные (EQE=37.5%) инфракрасные (850 нм) светодиоды с брэгговским и зеркальным отражателями. Физика и техника полупроводников, 2021, т. 55, № 12, с. 1218–1222. [Malevskaya, A.V., Kalyuzhnyy, N.A., Mintairov, S.A., Salii, R.A., Malevskii, D.A., Nakhimovich, M.V., Larionov, V.R., Pokrovskii, P.V., Shvarts, M.Z., Andreev, V.M., High efficiency (EQE=37.5%) infrared (850 nm) light-emitting diodes with bragg and mirror reflectors. Semiconductors, 2021, vol. 55, no. 12, pp. 1218–1222. (in Russian)] DOI: 10.21883/FTP.2021.12.51709.9711
  3. Lang, R., Schön, J., Lefèvre, J., Boizot, B., Dimroth, F., Lackner, D., Radiation hardness and post irradiation regeneration behavior of GaInAsP solar cells. Solar Energy Materials and Solar Cells, 2020, vol. 211, pp. 110551–11057. DOI: 10.1016/j.solmat.2020.110551
  4. Khvostikov, V.P., Pokrovskii, P.V., Khvostikova, O.A., Pan'chak, A.N., Andreev, V.M., High-efficiency AlGaAs/GaAs photovoltaic converters with edge input of laser light. Technical Physics Letters, 2018, vol. 44, no. 9, pp. 776–778. DOI: 10.1134/S1063785018090079
  5. Потапович, Н.С., Нахимович, М.В., Хвостиков, В.П., Фотоэлектрические преобразователи узкополосного излучения на основе гетероструктур InGaAsP/InP. Физика и техника полупроводников, 2021, т. 55, №11, с. 1091–1094. [Potapovich, N.S., Nakhimovich, M.V., Khvostikov, V.P., InGaAsP/InP photovoltaic converters for narrow-band radiation. Semiconductors, 2021, vol. 55, no. 11, pp. 1091–1094. (in Russian)] DOI: 10.21883/FTP.2021.11.51566.9688
  6. Liu, R., Shterengas, L., Stein, A., Kipshidze, G., Zakharov, D., Kisslinger, K., Belenky, G.L., Photonic crystal surface emitting diode lasers with λ near 2 μm. Photonics, 2022, vol. 9, no. 12, pp. 891–898. DOI: 10.3390/photonics9120891
  7. Cheng, H., Lin, S., Li, Z., Sun, K., Lee, C., PCSEL performance of type-I InGaAsSb double-QWs laser structure prepared by MBE. Materials, 2019, vol. 12, no. 2, pp. 317–326. DOI: 10.3390/ma12020317
  8. Gastellóu, E., García, R., Herrera, A.M., Ramos, A., García, G., Robles, M., Rodríguez, J.A., Ramírez, Y.D., Carrillo, R.C., Isotherm theoretical study of the AlxGa1-xAsySb1-y quaternary alloy using the regular solution approximation for its possible growth via liquid-phase epitaxy at low temperatures. Entropy, 2022, vol. 24, no. 12, pp. 1711–1718. DOI: 10.3390/e24121711
  9. Айдаралиев, М., Зотова, Н.В., Карандашев, С.А., Матвеев, Б.А., Ременный, М.А., Стусь, Н.М., Талалакин, Г.Н., Шустов, В.В., Кузнецов, В.В., Когновицкая, Е.А., Изопериодные структуры GaInPAsSb/InAs для приборов инфракрасной оптоэлектроники. Физика и техника полупроводников, 2002, т. 36, №8, с. 1010–1015. [Aydaraliev, M., Zotova, N.V., Karandashov, S.A., Matveev, B.A., Remennyi, M.A., Stus', N.M., Talalakin, G.N., Kuznetsov, V.V., Kognovitskaya, E.A., GaInPAsSb/InAs isoperiodic structures for infrared optoelectronic devices. Semiconductors, 2002, vol. 36, no. 8, pp. 1010–1015. (in Russian)]
  10. Алфимова, Д.Л., Лунин, Л.С., Лунина, М.Л., Пащенко, А.С., Чеботарев, С.Н., Выращивание и свойства изопериодных твердых растворов GaInPSbAs на подложках арсенида индия. Физика твердого тела, 2016, т. 58, №9, с. 1695–1700. [Alfimova, D.L., Lunin, L.S., Lunina, M.L., Pashchenko, A.S., Chebotarev, S.N., Growth and properties of isoperiod GaInPSbAs solid solutions on indium arsenide substrates. Physics of the Solid State, 2016, vol. 58, no. 9, pp. 1695–1070. (in Russian)]
  11. Лунин, Л.С., Лунина, М.Л., Алфимова, Д.Л., Пащенко, А.С., Пащенко, О.С., Морфология и структурные свойства эпитаксиальных пленок AlGaInSbAs, выращенных на подложках InAs. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2021, т. 33, №5, с. 33–41. [Lunin, L.S., Lunina, M.L., Alfimova, D.L., Pashchenko, A.S., Pashchenko, O.S., Morphology and structural properties of AlGaInSbAs epitaxial films grown on InAs substrates. Journal of surface investigation: X-Ray, synchrotron and neutron techniques, 2021, vol. 33, no. 5, pp. 33–41. (in Russian)] DOI: 10.31857/S1028096021050137

Issue

Section

Physics

Pages

63-69

Submitted

2023-06-13

Published

2023-06-30

How to Cite

Lunina M.L., Lunin L.S., Pashchenko A.S., Donskaya A.V., Stolyarov M.S. GazIn1-zPxAsySb1-x-y/InSb heterostructures for thermophotovoltaic converters. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 2, pp. 63-69. DOI: https://doi.org/10.31429/vestnik-20-2-63-69 (In Russian)