Physical and mathematical model of the process of synthesis of silver nanoparticles

Authors

  • Shashkov D.I. Kuban State University, Krasnodar, Российская Федерация ORCID 0009-0007-5221-0076
  • Malyshko V.V. Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Российская Федерация
  • Drobotenko M.I. Kuban State University, Krasnodar, Российская Федерация ORCID 0000-0003-4100-5740
  • Jimak S.S. Kuban State University, Krasnodar, Российская Федерация ORCID 0000-0003-2618-5376

UDC

538.958

DOI:

https://doi.org/10.31429/vestnik-20-3-86-92

Abstract

The article considers a physical and mathematical model of the synthesis of silver nanoparticles by the method of cavitation-diffusion photochemical reduction. The influence of the power of ultraviolet radiation on the rate of nanoparticle synthesis has been studied. It has been established that with a decrease in the power of UV radiation, the total duration of the synthesis of silver nanoparticles increases. Also, the rate of the chemical reactions themselves decreases due to a decrease in the amount of ОН and, as a result, a decrease in the concentration of е. The obtained results of the dependence of the concentration of the ammonia complex, atomic silver and silver dimers on time at different levels of ultraviolet radiation are consistent with the experimental results. The simplifications introduced into the model do not have a significant impact on the calculation results. The developed physical and mathematical model will allow us to study and improve the process of synthesis of silver nanoparticles used to impart antiseptic properties to suture materials, including against pathogens of bacterial infections.In addition, a promising area for the use of such nanoparticles may be the development of wound coverings based on fibers from various materials treated with a solution containing silver nanoparticles obtained by cavitation-diffusion photochemical reduction. When synthesizing nanoparticles using this method, more than half of the nanoparticles have a diameter of up to 5 nm, which will contribute to the destruction of biofilms formed on the surface of infected wounds.

Keywords:

silver nanoparticles, synthesis, mathematical modeling, ultraviolet

Acknowledgement

This work was supported by the state assignment of the Ministry of Education and Science to the Kuban State University (FZEN-2023-0006).

Author Infos

Denis I. Shashkov

преподаватель  кафедры радиофизики и нанотехнологий Кубанского государственного университета

e-mail: ShiniX88@mail.ru

Vadim V. Malyshko

канд. мед. наук, научный сотрудник лаборатории проблем распределения стабильных изотопов в живых системах Южного научного центра РАН

e-mail: intro-3@yandex.ru

Mikhail I. Drobotenko

канд. физ.-мат. наук, старший научный сотрудник Научно-исследовательской части Кубанского государственного университета

e-mail: mdrobotenko@mail.ru

Stepan S. Jimak

канд. биол. наук, доцент кафедры радиофизики и нанотехнологий Кубанского государственного университета

e-mail: jimack@mail.ru

References

  1. Pushankina, P., Baryshev, M., Petriev, I., Synthesis and Study of Palladium Mono- and Bimetallic (with Ag and Pt) Nanoparticles in Catalytic and Membrane Hydrogen Processes. Nanomaterials, 2022, vol. 12, p. 4178. DOI: 10.3390/nano12234178
  2. Zhang, X., Yang, Z., Yang, X., Zhang, F., Pan, Z., Sustainable Antibacterial Surgical Suture Based on Recycled Silk Resource by an Internal Combination of Inorganic Nanomaterials. ACS Applied Materials & Interfaces, 2023, vol. 15, p. 29971–29981. DOI: 10.1021/acsami.3c05054
  3. Джимак, С.С., Малышко, В.В., Горячко, А.И., Соколов, М.Е., Басов, А.А., Моисеев, А.В., Шашков, Д.И., Копытов, Г.Ф., Барышев, М.Г., Исаев, В.А., Сорбционная активность наночастиц серебра. Известия вузов. Физика, 2019, т. 62, № 2 (734), с. 114–122. [Dzhimak, S.S., Malyshko, V.V., Goryachko, A.I., Sokolov, M.E., Basov, A.A., Moiseev, A.V., Shashkov, D.I., Kopytov, G.F., Baryshev, M.G., Isaev, V.A., Sorption activity of silver nanoparticles. Izvestiya vuzov. Fizika = Izvestiya vuzov. Physics, 2019, vol. 62, no. 2 (734), pp. 114–122. (in Russian)]
  4. Джимак, С.С., Малышко, В.В., Горячко, А.И., Соколов, М.Е., Моисеев, А.В., Басов, А.А., Адсорбция наночастиц серебра на моно-и полифиламентных волокнах. Российские нанотехнологии, 2019, т. 14, № 1–2, с. 47–54. [Dzhimak, S.S., Malyshko, V.V., Goryachko, A.I., Sokolov, M.E., Moiseev, A.V., Basov, A.A., Adsorption of silver nanoparticles on mono- and polyfilament fibers. Rossiyskie nanotekhnologii = Russian nanotechnologies, 2019, vol. 14, no. 1–2, pp. 47–54. (in Russian)] DOI: 10.21517/1992-7223-2019-1-2-47-54
  5. Gherasim, O., Puiu, R.A., Bîrcă, A.C., Burdușel, A.-C., Grumezescu, A.M., An Updated Review on Silver Nanoparticles in Biomedicine Nanomaterials, 2020, vol. 10, iss. 11, p. 2318. DOI: 10.3390/nano10112318
  6. Pryshchepa, O., Pomastowski, P., Buszewski, B., Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci., 2020, vol. 284, p. 102246. DOI: 10.1016/j.cis.2020.102246
  7. Basov, A., Dzhimak, S., Sokolov, M., Malyshko, V., Moiseev, A., Butina, E., Elkina, A., Baryshev, M., Changes in number and antibacterial activity of silver nanoparticles on the surface of suture materials during cyclic freezing. Nanomaterials, 2022, vol. 12, p. 1164. DOI: 10.3390/nano12071164
  8. Камзин А.С., Obaidat I.M., Семенов В.Г., Narayanaswamy V., Al-Omari I.A., Issa B., Бурьяненко И.В. Разработка и характеристика магнитных наночастиц Co1-xZnxFe2O4 ($0\leqslant x\leqslant 0,6$) для биомедицинских применений. Физика твердого тела, 2023, т. 65, № 3, с. 482–496. DOI: FTT.2023.03.54749.544 [Kamzin, A.S., Obaidat, I.M., Semenov, V.G., Narayanaswamy, V., Al-Omari, I.A., Issa, B., Buryanenko, I.V., Development and characterization of magnetic nanoparticles Co1-xZnxFe2O4 ($0\leq x\leq 0.6$) for biomedical applications. Physics of the Solid State, 2022, iss. 6, p. 714. DOI: 10.21883/PSS.2023.03.55591.544 }
  9. Edis, Z., Haj Bloukh, S., Ibrahim, M.R., Abu Sara, H., ``Smart'' Antimicrobial nanocomplexes with potential to decrease Surgical Site Infections (SSI). Pharm., 2020, vol. 12, iss. 4, p. 361. DOI: 10.3390/pharmaceutics12040361
  10. Petriev, I.S., Bolotin, S.N., Frolov, V.Y., Baryshev, M.G., Isaev, V.A., Kopytov, G.F., Modifying the surface of a hydrogen permselective palladium–silver membrane. Bull. of the Rus. Acad. of Sci. Phys., 2016, vol. 80, iss. 6, pp. 624–626. DOI: 10.3103/S1062873816060241
  11. Petriev, I.S., Frolov, V.Y., Bolotin, S.N., Baryshev, M.G., Kopytov, G.F., A Surface-modified hydrogen-permeable palladium-silver plate. Rus. Phys. J., 2015, vol. 58, iss. 8, pp. 1044–1048. DOI: 10.1007/s11182-015-0609-3
  12. Pandey, P.C., Mitra, M.D., Shukla, S., Narayan, R.J., Organotrialkoxysilane-functionalized noble metal monometallic, bimetallic, and trimetallic nanoparticle mediated non-enzymatic sensing of glucose by resonance rayleigh scattering. Biosen., 2021, vol. 11, iss. 4, p. 122. DOI: 10.3390/bios11040122
  13. Шашков, Д.И., Копытов, Г.Ф., Малышко, В.В., Лыкова, А.В., Моисеев, А.В., Демин, Н.Н., Джимак, С.С., Барышев, М.Г., Влияние циклической заморозки на динамику нанокластеров серебра на поверхности полипропиленовых и полиэфирных волокон. Известия вузов. Физика, 2022, т. 65, № 2 (771), с. 121–125. [Shashkov, D.I., Kopytov, G.F., Malyshko, V.V., Lykova, A.V., Moiseev, A.V., Demin, N.N., Dzhimak, S.S., Baryshev, M.G., Effect of cyclic freezing on the dynamics of silver nanoclusters on the surface of polypropylene and polyester fibers. Izvestiya vuzov. Fizika = Izvestiya vuzov. Physics, 2022, vol. 65, no. 2 (771), pp. 121–125. (in Russian)] DOI: 10.17223/00213411/65/2/121
  14. Akter, S., Huq, M.A., Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11(T) and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. Artif. C. Nanomed. Biotechnol., 2020, vol. 48, iss. 1, pp. 672–682. DOI: 10.1080/21691401.2020.1730390
  15. Zhao, D.H., Yang, J., Yao, M.H., Li, C.Q., Zhang, B., Zhu, D., Zhao, Y.D., Liu, B., An in situ synthesis of silver nanoparticle-loaded genetically engineered polypeptide nanogels for antibacterial and wound healing applications. Dal. Trans, 2020, vol. 49, iss. 34, pp. 12049–12055. DOI: 10.1039/d0dt00751j
  16. Zapor, L., Effects of silver nanoparticles of different sizes on cytotoxicity and oxygen metabolism disorders in both reproductive and respiratory system cells. Arch. Env. Prot. 2016, vol. 42, iss. 4, pp. 32–47. DOI: 10.1515/aep-2016-0038
  17. Bélteky, P., Rónavári, A., Zakupszky, D., Boka, E., Igaz, N., Szerencsés, B., Pfeiffer, I., Vágvölgyi, C., Kiricsi, M., Kónya, Z., Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int. J. Nanomed., 2021, vol. 16, pp. 3021–3040. DOI: 10.2147/IJN.S304138
  18. Ganash, E.A., Altuwirqi, R.M., Size control of synthesized silver nanoparticles by simultaneous chemical reduction and laser fragmentation in origanum majorana extract: antibacterial application. Mater., 2021, vol. 14, iss. 9, p. 2326. DOI: 10.3390/ma14092326
  19. Малышко, В.В., Джимак, С.С., Ломакина, Л.В., Басов, А.А., Шашков, Д.И., Способ повышения количества и антибактериальной активности наночастиц серебра на шовном материале из шелка. Патент на изобретение 2770277 C1, 15.04.2022. Заявка № 2021125044 от 23.08.2021. [Malyshko, V.V., Dzhimak, S.S., Lomakina, L.V., Basov, A.A., Shashkov, D.I., A method for increasing the amount and antibacterial activity of silver nanoparticles on suture material from silks. Patent 2770277 C1, 04/15/2022. Application No. 2021125044 dated 08/23/2021. (in Russian)]
  20. Джимак, С.С., Соколов, М.Е., Басов, А.А., Федосов, С.Р., Малышко, В.В., Власов, Р.В., Лясота, О.М., Барышев, М.Г., Оптимизация физико-химических условий для получения наночастиц серебра и оценка биологических эффектов синтезированных коллоидных растворов. Российские нанотехнологии, 2016, т. 11, № 11–12, с. 132–137. [Dzhimak, S.S., Sokolov, M.E., Basov, A.A., Fedosov, S.R., Malyshko, V.V., Vlasov, R.V., Lyasota, O.M., Baryshev , MG, Optimization of physicochemical conditions for obtaining silver nanoparticles and evaluation of biological effects of synthesized colloidal solutions. Rossiyskie nanotekhnologii = Russian nanotechnologies, 2016, vol. 11, no. 11–12, pp. 132–137. (in Russian)]
  21. Джимак, С.С., Шашков, Д.И., Малышко, В.В., Моисеев, А.В., Копытов, Г.Ф., Формирование однородных наноструктур, содержащих серебро, на поверхности полимера гликолевой кислоты при циклической заморозке. Известия вузов. Физика, 2021, т. 64, № 6 (763), с. 62–67. [Dzhimak, S.S., Shashkov, D.I., Malyshko, V.V., Moiseev, A.V., Kopytov, G.F., Formation of homogeneous nanostructures containing silver on the surface of a glycolic acid polymer during cyclic freezing. Izvestiya vuzov. Fizika = Izvestiya vuzov. Physics, 2021, vol. 64, no. 6 (763), pp. 62–67. (in Russian)] DOI: 10.17223/00213411/64/6/62
  22. Копытов, Г.Ф., Малышко, В.В., Моисеев, А.В., Басов, А.А., Джимак, С.С., Особенности сорбции наночастиц серебра на поверхности полимерных волокон гликолевой и молочной кислот при циклической заморозке в присутствии желатина и хитозана. Известия вузов. Физика, 2022, т. 65, № 6 (775), с. 105–111. [Kopytov, G.F., Malyshko, V.V., Moiseev, A.V., Basov, A.A., Dzhimak, S.S., Features of the sorption of silver nanoparticles on the surface of polymer fibers of glycolic and lactic acids during cyclic freezing in the presence of gelatin and chitosan. Izvestiya vuzov. Fizika = Izvestiya vuzov. Physics, 2022, vol. 65, no. 6 (775), pp. 105–111. (in Russian)] DOI: 10.17223/00213411/65/6/105

Issue

Section

Physics

Pages

86-92

Submitted

2023-07-14

Published

2023-09-29

How to Cite

Shashkov D.I., Malyshko V.V., Drobotenko M.I., Jimak S.S. Physical and mathematical model of the process of synthesis of silver nanoparticles. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 3, pp. 86-92. DOI: https://doi.org/10.31429/vestnik-20-3-86-92 (In Russian)