Development of a method for the exact solution of systems of Wiener-Hopf integral equations for modeling of self-organization and self-assembly of nanoparticles of complex rheology

Authors

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-20-3-24-29

Abstract

The paper describes a method for the exact solution of a system of Wiener–Hopf integral equations arising during the construction of nano-particles from materials of complex rheologies. It is assumed that the contact problem for a nanoparticle is formulated at the boundary of a multilayer multicomponent material. It is assumed that nano particles have carriers in areas of non-classical shape, for example, in the simplest case, band-shaped. By the Fourier transform along the coordinate directed along the axis of the strip, the problem becomes one-dimensional and its exact solution can be constructed using the solution of the Wiener-Hopf equation. In the case of materials of complex rheologies, the solution becomes multicomponent and a system of Wiener–Hopf integral equations is obtained. In the same way, solutions can be built in other non-classical areas. In the contact area, there can be any conditions of a mechanical, physical or chemical nature that lead the boundary problem to a system of arbitrary finite number of Wiener–Hopf integral equations with a meromorphic matrix in the core. A new universal modeling method developed earlier by the authors has been applied. It allows you to represent the solutions of vector boundary value problems in the form of decomposition by solutions of scalar boundary value problems. Together with the factorization approach, this made it possible for the first time to construct an exact solution of such a system of integral equations. The article provides a summary of the method.

Keywords:

nanoparticles, self-organization, self-assembly, system of Wiener-Hopf integral equations, boundary value problems

Acknowledgement

The work was financially supported by the Russian Science Foundation (project no. 22-21-00128).

Author Infos

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, заведующий кафедрой математического моделирования Кубанского государственного университета

e-mail: babeshko41@mail.ru

Olga V. Evdokimova

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательской части Кубанского государственного университета

e-mail: evdokimova.olga@mail.ru

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Dmitry A. Khripkov

научный сотрудник Кубанского государственного университета

e-mail: vestnik@fpm.kubsu.ru

References

  1. Freund, L.B., Dynamic Fracture Mechanics. Cambridge, UK. Cambridge University Press. 1998.
  2. Ворович, И.И., Александров, В.М., Бабешко, В.А., Неклассические смешанные задачи теории упругости. Москва, Наука, 1974. [Vorovich, I.I., Alexandrov, V.M., Babeshko, V.A., Neklassicheskie smeshannye zadachi teorii uprugosti = Nonclassical mixed problems of elasticity theory. Moscow, Nauka, 1974. (in Russian)]
  3. Храпков, А.А., Решения задач в замкнутой формы об упругом равновесии бесконечного клина с несимметричной выемкой на вершине. ПММ, 1971, vol. 35, pp. 1009–1016. [Khrapkov, A. A., Solutions of closed-form problems on the elastic equilibrium of an infinite wedge with an asymmetric notch at the top. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 1971, vol. 35, pp. 1009–1016. (in Russian)]
  4. Achenbach, J.D., Wave propagation in Elastic Solids. North-Holland Series in Applied Mathematics and Mechanics. Amsterdam, North-Holland, 1973.
  5. Ворович, И.И., Бабешко, В.А., Динамические смешанные задачи теории упругости для неклассических областей. Москва, Наука, 1979. [Vorovich, I.I., Babeshko, V.A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey = Dynamic mixed problems of elasticity theory for nonclassical domains. Moscow, Nauka, 1979. (in Russian)]
  6. Abrahams, I.D., Wickham, G.R., General Wiener-Hopf factorization matrix kernels with exponential phase factors. SIAM J. Appl. Math., 1990, vol. 50, pp. 819–838.
  7. Norris, A.N., Achenbach, J.D., Elastic wave diffraction by a semi infinite crack in a transversely isotropic material. Q. J. Apple. Math. Mech., 1984, vol. 37, pp. 565–580.
  8. Sautbekov, S., Nilsson, B., Electromagnetic scattering theory for gratings based on the Wiener-Hopf method. AIP Conf. Proc., 2009, vol. 1106, pp. 110–117.
  9. Нобл Б. Метод Винера-Хопфа. Мовсква, Иностранная литература, 1962. [Noble, B., Metod Vinera-Khopfa = Wiener-Hopf method. Moscow, Inostrannaya literatura, 1962. (in Russian)]
  10. Chakrabarti, A., George, A.J., Solution of a singular integral equation involving two intervals arising in the theory of water waves. Appl. Math. Lett., 1994, vol. 7, pp. 43–47.
  11. Davis, A.M.J., Continental shelf wave scattering by a semi-infinite coastline. Geophys. Astrophys. Fluid Dyn., 1987, vol. 39, pp. 25–55.
  12. Payandeh Najafabadi, A.T., Kucerovsky, D., Exact solutions for a class matrix Riemann-Hilbert problems. IMA Journal of Applied Mathematics, 2014, vol. 79, pp. 109-123. DOI: 10.1093/imamat/hxs044
  13. Anderson, B.D., Moore, J.B., Optimal Filtering. New York, SDover Publications, 2005.
  14. Litvinchuk, G.S., Spitkoskii, I.M., Factorization of Measurable Matrix Functions. Boston, Birkhäuser Verlag Basel, 1987.
  15. Адуков, В.М., Факторизация Винера-Хопфа мероморфных матриц-функций. Алгебра и анализ, 1992, т. 4, вып. 1, с. 54–74. [Adukov, V.M., Wiener-Hopf factorization of meromorphic matrix-functions. Algebra i analiz = Algebra and Analysis, 1992, vol. 4, iss. 1, pp. 54–74. (in Russian)]
  16. Fusai, G., Abrahams, I.D., Sgarra, C., An exact analytical solution for discrete barrier options. Finance Stoch., 2006, vol. 10, pp. 1–26.
  17. Payandeh Najafabadi, A.T.,Kucerovsky, D., On distribution of extrema for a class of Lévy processes. J. Probab. Statist. Sci., 2011, vol. 9, pp. 127–138.
  18. Brockwell, P.J., Davis, R.A., Introduction to Time Series and Forecasting. New York, Springer, 2002.
  19. Dym, H., McKean, H.P., Fourier Series and Integrals. Probability and Mathematical Statistics. New York-London. Academic Press, 1972.
  20. Ворович, И.И., Бабешко, В.А., Пряхина, О.Д., Динамика массивных тел и резонансные явления в деформируемых средах. М., Наука, 1999. [Vorovich, I.I.,Babeshko, V.A., Pryakhina, O.D., Dinamika massivnykh tel i rezonansnye yavleniya v deformiruemykh sredakh = Dynamics of massive bodies and resonant phenomena in deformable media. Moscow, Nauka, 1999. (in Russian)]
  21. Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Фрактальные свойства блочных элементов и новый универсальный метод моделирования. ДАН, 2021, т. 499, с. 21–26. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk = Rep. of the Academy of Sciences, 2021, vol. 499, pp. 21–26. (in Russian)] DOI: 10.31857/S2686740021040039
  22. Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., On the problem of evaluating the behavior of multicomponent materials in mixed boundary conditions in contact problems. Materials Physics and Mechanics, 2022, vol. 48, iss. 3, pp. 379–385. DOI: 10.18720/MPM.48(3)2022_8

Issue

Section

Mechanics

Pages

24-29

Submitted

2023-08-16

Published

2023-09-29

How to Cite

Babeshko V.A., Evdokimova O.V., Babeshko O.M., Khripkov D.A. Development of a method for the exact solution of systems of Wiener-Hopf integral equations for modeling of self-organization and self-assembly of nanoparticles of complex rheology. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 3, pp. 24-29. DOI: https://doi.org/10.31429/vestnik-20-3-24-29 (In Russian)