On the conditions of stability of cracks of a new type

Authors

  • Gorshkova E.M. Kuban State University, Krasnodar, Российская Федерация ORCID 0000-0002-2415-6224
  • Babeshko O.M. Kuban State University, Krasnodar, Российская Федерация ORCID 0000-0003-1869-5413
  • Zaretskiy A.G. Kuban State University, Krasnodar, Российская Федерация
  • Evdokimov V.S. Kuban State University, Krasnodar, Российская Федерация

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-20-3-37-41

Abstract

The paper studies the problem of stability of a multilayer medium containing a new type of crack perpendicular to the boundary. Stability is understood as the possibility of the emergence of new solitary resonances that can destructively affect the crack. The research is based on the use of the block element method, which allows obtaining accurate solutions to contact problems and detecting hidden phenomena. The study uses the properties of dynamic contact problems with absolutely rigid and deformable stamps previously discovered by the block element method. It indicates that in order to identify the lack of stability, it is sufficient to consider the case of absolutely rigid semi-infinite plates forming a crack of a new type. The paper shows that the described crack of a new type is not stable, both in the case of absolutely rigid plates forming it, and in the case of deformable ones.

Keywords:

new type cracks, stability, block elements, integral equations, isolated resonances

Acknowledgement

This work was supported by the Russian Science Foundation (project no. 22-29-00213).

Author Infos

Elena M. Gorshkova

канд. физ.-мат. наук, старший научный сотрудник Научно-исследовательской части Кубанского государственного университета

e-mail: gem@kubsu.ru

Olga M. Babeshko

д-р физ.-мат. наук, главный научный сотрудник научно-исследовательского центра прогнозирования и предупреждения геоэкологических и техногенных катастроф Кубанского государственного университета

e-mail: babeshko49@mail.ru

Aleksandr G. Zaretskiy

студент Кубанского государственного университета

e-mail: sam_one@mail.ru

Vladimir S. Evdokimov

студент Кубанского государственного университета, лаборант Южного научного центра РАН

e-mail: evdok_vova@mail.ru

References

  1. Ворович, И.И., Александров, В.М., Бабешко, В.А., Неклассические смешанные задачи теории упругости. Москва, Наука, 1974. [Vorovich, I.I., Alexandrov, V.M., Babeshko, V.A., Neklassicheskie smeshannye zadachi teorii uprugosti = Nonclassical mixed problems of elasticity theory. Moscow, Nauka, 1974. (in Russian)]
  2. Ворович, И.И., Бабешко, В.А., Динамические смешанные задачи теории упругости для неклассических областей. Москва, Наука, 1979. [Vorovich, I.I., Babeshko, V.A., Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey = Dynamic mixed problems of elasticity theory for nonclassical domains. Nauka, Moscow, 1979. (in Russian)]
  3. Галин, Л.А., Контактные задачи теории упругости и вязкоупругости. Москва, Наука, 1980. [Galin, L.A., Kontaktnye zadachi teorii uprugosti i vyazkouprugosti = Контактные задачи теории упругости и вязкоупругости. Moscow, Nauka, 1980. (in Russian)]
  4. Штаерман, И.Я., Контактная задача теории упругости. Москва, Гостехиздат, 1949. [Shtaerman, I.Ya., Kontaktnaya zadacha teorii uprugosti = Contact problem of elasticity theory. Moscow, Gostekhizdat, 1949. (in Russian)]
  5. Горячева, И.Г., Добычин, М.Н., Контактные задачи трибологии. Москва, Машиностроение, 1988. [Goryacheva, I.G., Dobychin, M.N., Kontaktnye zadachi tribologii = Contact problems of tribology. Moscow, Mashinostroenie, 1988. (in Russian)]
  6. Papangelo, A., Ciavarella, M., Barber, J.R., Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws. Proc. R. Soc. A., 2015, vol. 471. DOI: 10.1098/rspa.2015.0271
  7. Ciavarella, M., The generalized Cattaneo partial slip plane contact problem. I–Theory. Int. J. Solids Struct., 1998, vol. 35, pp. 2349–2362. DOI: 10.1016/S0020-7683(97)00154-6
  8. Ciavarella, M., The generalized Cattaneo partial slip plane contact problem. II–Examples. Int. J. Solids Struct., 1998, vol. 35, pp. 2363–2378. DOI: 10.1016/S0020-7683(97)00155-8
  9. Zhou, S., Gao, X.L., Solutions of half-space and half-plane contact problems based on surface elasticity. Zeitschrift fr angewandte Mathematik und Physik, 2013, vol. 64, pp. 145–166. DOI: 10.1007/s00033-012-0205-0
  10. Guler, M.A., Erdogan, F., The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci., 2007, vol. 49, pp. 161–182. DOI: 10.1016/j.ijmecsci.2006.08.006
  11. Ke, L.-L., Wang, Y.-S., Two-Dimensional Sliding Frictional Contact of Functionally Graded Materials. Eur. J. Mech. A/Solids, 2007, vol. 26, pp. 171–188. DOI: 10.1016/j.euromechsol.2006.05.007
  12. Almqvist, A., Sahlin, F., Larsson, R., Glavatskih, S., On the dry elasto-plastic contact of nominally flat surfaces. Tribology International, 2007, vol. 40, iss. 4, pp. 574–579. DOI: 10.1016/j.triboint.2005.11.008
  13. Almqvist, A., An LCP solution of the linear elastic contact mechanics problem, 2013. URL: https://www.mathworks.com/matlabcentral/fileexchange/43216-an-lcp-solution-of-the-linear-elastic-contact-mechanics-problem
  14. Andersson, L.E., Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim., 2000, vol. 42, pp. 169–202. DOI: 10.1007/s002450010009
  15. Cocou, M., A class of dynamic contact problems with Coulomb friction in viscoelasticity. Nonlinear Analysis: Real World Applications, 2015, vol. 22, pp. 508–519. DOI: 10.1016/j.nonrwa.2014.08.012
  16. Cocou, M., Rocca, R., Existence results for unilateral quasistatic contact problems with friction and adhesion. Math. Modelling and Num. Analysis, 2000, vol. 34, pp. 981–1001.
  17. Kikuchi, N., Oden, J., Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM Studies in Applied Mathematics. SIAM, Philadelphia, 1988.
  18. Raous, M., Cangémi, L., Cocu, M., A consistent model coupling adhesion, friction, and unilateral contact. Comput. Meth. Appl. Mech. Engrg., 1999, vol. 177, pp. 383–399. DOI: 10.1016/S0045- 7825(98)00389-2
  19. Shillor, M., Sofonea, M., Telega, J.J., Models and analysis of quasistatic contact. Lect. Notes Phys., vol. 655. Springer, Berlin, Heidelberg, 2004.
  20. Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М. Зарецкая, М.В., Евдокимов, В.С., Точное решение уравнения Винера-Хопфа на отрезке для контактных задач и задач теории трещин в слоистой среде. ДАН, 2023, т. 68, с. 28–33. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M. Zaretskaya, M.V., Evdokimov, V.S., Exact solution of the Wiener-Hopf equation on a segment for contact problems and problems of the theory of cracks in a layered medium. Doklady Akademii nauk = Rep. of the Academy of Sciences, 2023, vol. 68, pp. 28–33. (in Russian)] DOI: 10.31857/S2686740023020025

Issue

Section

Mechanics

Pages

37-41

Submitted

2023-08-16

Published

2023-09-29

How to Cite

Gorshkova E.M., Babeshko O.M., Zaretskiy A.G., Evdokimov V.S. On the conditions of stability of cracks of a new type. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 3, pp. 37-41. DOI: https://doi.org/10.31429/vestnik-20-3-37-41 (In Russian)