Method of investigation of nanoparticles for materials of complex rheologies

Authors

  • Zaretskaya M.V. Kuban State University, Krasnodar, Российская Федерация ORCID 0000-0001-9916-1768
  • Babeshko V.A. Kuban State University, Krasnodar, Российская Федерация ORCID 0000-0002-6663-6357
  • Telyatnikov I.S. Kuban State University, Krasnodar, Российская Федерация ORCID 0000-0001-8500-2133
  • Snetkov D.A. Kuban State University, Krasnodar, Российская Федерация

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-20-3-50-56

Abstract

In earlier works of the authors, the problem of modeling the self-organization and self-assembly of nanoparticles into fragments of nanomaterials was investigated.

It was assumed that nanoparticles are represented by a material described by the Helmholtz equation, for which the corresponding boundary value problem was solved. In the event that a nanoparticle has a carrier in the form of a strip, the problem of representing the solution of a vector boundary value problem is solved quite simply with the help of a set of solutions to scalar problems in the strip.

However, in the case of regions with a piecewise smooth boundary, this becomes less obvious. In this regard, the paper shows that such a decomposition is feasible for rectangular wedge-type regions. Using solutions in this domain, one can construct asymptotic and approximate solutions for such a nonclassical domain as a rectangle. The approach used in the work is, based on a new universal modeling method.

Keywords:

nanoparticles, boundary value problems, block element method, packed block elements, Lame equations, Helmholtz equations

Acknowledgement

This work was supported by the Russian Science Foundation (project no. 22-21-00128).

Author Infos

Marina V. Zaretskaya

д-р физ.-мат. наук, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: zarmv@mail.ru

Vladimir A. Babeshko

академик РАН, д-р физ.-мат. наук, заведующий кафедрой математического моделирования Кубанского государственного университета

e-mail: babeshko41@mail.ru

Ilya S. Telyatnikov

канд. физ.-мат. наук, канд. физ.-мат. наук, старший научный сотрудник Южного научного центра РАН

e-mail: ilux_t@list.ru

Dmitry A. Snetkov

инженер Научно-исследовательской части Кубанского государственного университета

e-mail: dimons3s@yandex.ru

References

  1. Новацкий, В., Теория упругости. Москва, Мир, 1975. [Nowatsky, V., Teoriya uprugosti = Elasticity Theory. Moscow, Mir, 1975. (in Russian)]
  2. Galerkin, B.G., Contribution à la solution générale du problème de la théorie de l'élasticité dans le cas de trois dimensions. C. R. Acad. Sci., 1930, vol. 190, pp. 1047–1048. (in French)
  3. Galerkin, B.G., Contribution à la solution générale du problème de la théorie de l'élasticité dans le cas de trois dimensions. C. R. Acad. Sci., 1931, vol. 193, pp. 568–571. (in French)
  4. Игумнов, Л.А., Грезина, А.В., Метрикин, В.С., Панасенко, А.Г., Численно-аналитическое моделирование диффузионных процессов в ограниченных многокомпонентных твердых телах. Проблемы прочности и пластичности, 2018, т. 80, № 3, с. 336–348. [Igumnov, L.A., Grezina, A.V., Metrikin, V.S., Panasenko, A.G., Numerical-analytical modeling of diffusion processes in bounded multicomponent solids. Problemy prochnosti i plastichnosti = Problems of Strength and Plasticity, 2018, vol. 80, no. 3, pp. 336–348. (in Russian)]
  5. Ворович, И.И., Александров, В.М., Бабешко, В.А., Неклассические смешанные задачи теории упругости. Москва, Наука, 1974. [Vorovich, I.I., Alexandrov, V.M., Babeshko, V.A., Neklassicheskie smeshannye zadachi teorii uprugosti = Nonclassical mixed problems of elasticity theory. Moscow, Nauka, 1974. (in Russian)]
  6. Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Исследование трехмерного уравнения Гельмгольца в клине методом блочного элемента. ПМТФ, 2021, т. 62, № 5, с. 15–21. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Investigation of the three-dimensional Helmholtz equation in a wedge by the block element method. Prikladnaya mekhanika i tekhnicheskaya fizika = Applied Mechanics and Engineering Physics, 2021, vol. 62, no. 5, pp. 15–21. (in Russian)] DOI: 10.15372/PMTF20210500
  7. Gordeev, S.K., Kukushkin, S.A., Osipov, A.V., Pavlov, Yu.V., Self-organization in the formation of a nanoporous carbon material. Physics of the Solid State, 2000, vol. 42, iss. 12, pp. 2314–2317.
  8. Arghavan, S., Singh A.V., On the vibrations of single-walled carbon nanotubes. J. of Sound and Vibration, 2011, vol. 330, iss. 13, pp. 3102–3122.
  9. Kang, J.W., Kwon, O.K., A molecular dynamics simulation study on resonance frequencies comparison of tunable carbon-nanotube resonators. Applied Surface Science, 2012, vol. 258, iss. 6, pp. 2014–2016. DOI: 10.1016/j.apsusc.2011.05.026
  10. Yoon J.W., Hwang H.J., Molecular dynamics modeling and simulations of a single-walled carbon-nanotube-resonator encapsulating a finite nanoparticle. Computational Materials Science, 2011, vol. 50, iss. 9, pp. 2741–2744. DOI: 10.1016/j.commatsci.2011.04.033
  11. Jun, Yin, Zhuhua, Zhang, Xuemei, Li, Jin, Yu, Jianxin, Zhou, Yaqing, Chen, Wanlin, Guo, Waving potential in grapheme. Nature Communications, 2014, vol. 5, p. 3582. DOI: 10.1038/ncomms4582
  12. Jun, Yin, Xuemei, Li, Jin, Yu, Zhuhua, Zhang, Jianxin, Zhou, Wanlin Guo, Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotechnology, 2014, vol. 9, iss. 5, pp. 378–383. DOI: 10.1038/nnano.2014.56
  13. Lei, X.W., Natsuki, T., Shi, J.X., Ni, Q.Q., An atomic-resolution nanomechanical mass sensor based on circular monolayer graphene sheet: Theoretical analysis of vibrational properties. J. Appl. Phys., 2013, vol. 113, p. 154313. DOI: 10.1063/1.4802438
  14. Lengiewicz, J., Korelc, J., Stupkiewicz, S., Automation of finite element formulations for large deformation contact problems. Int. J. Numer. Meth. Engng, 2011, vol. 85, iss. 10, pp. 1252–1279. DOI: 10.1002/nme.3009
  15. Roland, T., Retraint, D., Lu, K., Lu, J., Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater., 2006, vol. 54, pp. 1949–1954. DOI: 10.1016/j.scriptamat.2006.01.049
  16. Tian, J., Villegas, J., Yuan, W., Fielden, D., Shaw, L., Liaw, P., Klarstrom, D., A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater. Sci. Eng: A, 2007, vol. 468–470, pp. 164–170. DOI: 10.1016/j.msea.2006.10.150
  17. Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Фрактальные свойства блочных элементов и новый универсальный метод моделирования. ДАН, 2021, т. 499, с. 21–26. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk = Reports of the Academy of Sciences, 2021, vol. 499, pp. 21–26. (in Russian)] DOI: 10.31857/S2686740021040039
  18. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Метод блочного элемента в разложении решений сложных граничных задач механики. ДАН, 2020, т. 495, с. 34–38. [Babeshko V.A., Evdokimova O.V., Babeshko O.M. The block element method in the expansion of solutions to complex boundary value problems in mechanics. Doklady Akademii nauk = Reports of the Academy of Sciences, 2020, vol. 495, pp. 34–38. (in Russian)] DOI: 10.31857/S2686740020060048
  19. Бабешко, В.А., Евдокимова, О.В., Бабешко, О.М., Об одном методе решения граничных задач динамической теории упругости в четвертьплоскости. ПММ, 2021, т. 85, № 3, с. 275–282. [Babeshko, V.A., Evdokimova, O.V., Babeshko, O.M., On a method for solving boundary value problems in the dynamic theory of elasticity in a quarter-plane. Prikladnaya matematika i mekhanika = Applied Mathematics and Mechanics, 2021, vol. 85, no. 3, pp. 275–282.] DOI: 10.31857/S0032823521030024

Issue

Section

Mechanics

Pages

50-56

Submitted

2023-08-16

Published

2023-09-29

How to Cite

Zaretskaya M.V., Babeshko V.A., Telyatnikov I.S., Snetkov D.A. Method of investigation of nanoparticles for materials of complex rheologies. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 3, pp. 50-56. DOI: https://doi.org/10.31429/vestnik-20-3-50-56 (In Russian)