Computational aspects of constructing field gradients in the numerical implementation of variational algorithms for identifying the parameters of the transfer model

Authors

UDC

519.63

DOI:

https://doi.org/10.31429/vestnik-21-1-34-40

Abstract

When solving environmental problems, methods of numerical modeling of dynamic processes in reservoirs, modeling the spread of various impurities and pollutants occupy an important place. A special place in this case is occupied by methods of assimilation of measurement data in numerical models. One of the approaches to solving such problems is the variational approach. Such algorithms are based on solving conjugate problems and problems in variations in the identification of numerical simulation parameters. The search for such parameters is carried out by minimizing the prediction quality functional, which characterizes the deviations of model estimates of the state from the measurement data. When implementing the variational algorithm, the gradient components in the parameter space are determined. If the identification of the initial field requires the presence of the solution of the conjugate problem itself, then when determining the coefficients of turbulent diffusion, it is necessary to calculate the spatial derivatives of the concentration field itself, as well as the solutions of the conjugate problem. In this paper, we consider the difference discretization of the passive impurity transfer equation and the consistent approximation of the gradients of the fields of solutions to the main and associated problems in the implementation of a variational algorithm for assimilation of measurement data and identification of model parameters. A wide parametric family of difference schemes for integrating the used transfer model with certain properties at different parameter values is presented. The corresponding approximations of the gradients of the fields necessary for the implementation of the variational identification algorithm are written out.

Keywords:

transfer model, variational assimilation algorithm, numerical discretization

Acknowledgement

The work was carried out within the framework of the state assignment on the topic FNNN-2021-0005 "Comprehensive interdisciplinary studies of the biological processes determining the functioning and evolution of ecosystems of the coastal zones of the Black and Azov Seas" (code "Coastal Research").

Author Infos

Vladimir S. Kochergin

младший научный сотрудник отдела теории волн Федерального исследовательского центра «Морской гидрофизический институт РАН»

e-mail: vskocher@gmail.com

Sergey V. Kochergin

старший научный сотрудник отдела вычислительных технологий и математического моделирования Федерального исследовательского центра «Морской гидрофизический институт РАН»

e-mail: ko4ep@mail.ru

References

  1. Sasaki, Y., A fundamental study of the numerical prediction based on the variational principle. Journal of the Meteorological Society of Japan, Ser. 2, 1955, vol. 33, no. 6, pp. 262–275.
  2. Sasaki, Y., Some basic formations in numerical variational analysis. Mon. Wea. Rev., 1970, vol. 98, pp. 875–883.
  3. Marchuk, G.I., Penenko, V.V., Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment. In Marchuk, G.I. (ed.), Proc. оf the IFIP-TC7 Working conf. "Modelling and Optimization of Complex Systems". NewYork, Springer, 1978, pp. 240–252.
  4. Пененко, В.В., Методы численного моделирования атмосферных процессов. Ленинград, Гидрометеоиздат, 1981. [Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov = Methods for numerical modeling of atmospheric processes. Leningrad, Gidrometeoizdat, 1981 (in Russian)]
  5. Лионс, Ж.Л., Оптимальное управление системами, описываемыми уравнениями с частными производными. Москва, Мир, 1972. [Lyons, J.L., Optimal'noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi = Optimal control of systems described by partial differential equations. Moscow, Mir, 1972. (in Russian)]
  6. Лионс, Ж.Л., Управление сингулярными распределенными системами. Москва, Наука, 1987. [Lyons, J.L., Upravlenie singulyarnymi raspredelennymi sistemami = Managing Singular Distributed Systems. Moscow, Nauka, 1987. (in Russian)]
  7. Лионс, Ж.Л., Ценность. Сопряженная функция. Москва, Атомиздат, 1972. [Lyons, J.L., Tsennost'. Sopryazhennaya funktsiya = Value. Conjugate function. Moscow, Atomizdat, 1972. (in Russian)]
  8. Марчук, Г.И., Математическое моделирование в проблеме окружающей среды. Москва, Наука, 1982. [Marchuk, G.I., Matematicheskoe modelirovanie v probleme okruzhayushchey sredy = Mathematical modeling in environmental problems. Moscow, Nauka, 1982. (in Russian)]
  9. Марчук, Г.И., Основные и сопряженные уравнения динамики атмосферы и океана. Метеорология и гидрология, 1974, № 2, с. 17–34. [Marchuk, G.I., Basic and conjugate equations of the dynamics of the atmosphere and ocean. Meteorologiya i gidrologiya = Meteorology and hydrology, 1974, no. 2, pp. 17–34. (in Russian)]
  10. Shutyaev, V.P., Methods for observation data assimilation in problems of physics of atmosphere and ocean. Izvestiya Atmospheric and Oceanic Physics, 2019, vol. 55, pp. 17–31. DOI: 10.1134/S0001433819010080
  11. Кочергин, В.С., Кочергин, С.В., Идентификация мощности источника загрязнения в Казантипском заливе на основе применения вариационного алгоритма. Морской гидрофиз. журн., 2015, № 2. P. 79–88. [Kochergin, V.S., Kochergin, S.V., Identification of the power of the pollution source in the Kazantip Bay based on the application of a variational algorithm. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2015, no. 2, pp. 79–88. (in Russian)] DOI: 10.22449/0233-7584-2015-2-79-88
  12. Кочергин, В.С., Кочергин, С.В., Станичный, С.В., Вариационная ассимиляция спутниковых данных поверхностной концентрации взвешенного вещества в Азовском море. Современные проблемы дистанционного зондирования Земли из космоса, 2020, т. 17, № 2, с. 40–48. [Kochergin, V.S., Kochergin, S.V., Identification of the power of the pollution source in the Kazantip Bay based on the application of a variational algorithm. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2015, no. 2, p. 79–88. (in Russian)]
  13. Роуч, П., Вычислительная гидродинамика. Москва, Мир, 1980. [Roach, P., Vychislitel'naya gidrodinamika = Computational Fluid Dynamics. Moscow, Mir, 1980. (in Russian)]
  14. Самарский, А.А., Теория разностных схем. Москва, Наука, 1983. [Samarsky, A.A., Teoriya raznostnykh skhem = Theory of Difference Schemes. Moscow, Nauka, 1983. (in Russian)]
  15. Булеев, Н.И., Тимухин, Г.И., О составлении разностных уравнений гидродинамики вязкой неоднородной среды. Численные методы механики сплошной среды, 1972, т. 3, № 4, с. 19–26. [Buleev, N.I., Timukhin, G.I., On the compilation of difference equations for the hydrodynamics of a viscous inhomogeneous medium. Chislennye metody mekhaniki sploshnoy sredy = Numerical methods of continuum mechanics, 1972, vol. 3, no. 4, pp. 19–26. (in Russian)]
  16. Булеев, Н.И., Пространственная модель турбулентного обмена. Москва, Наука, 1983. [Buleev, N.I., Prostranstvennaya model' turbulentnogo obmena = Spatial model of turbulent exchange. Moscow, Nauka, 1983. (in Russian)]
  17. Ильин, А.М., Разностная схема для дифференциального уравнения с малым параметром при старшей производной. Математические заметки, 1969, т. 6, вып. 2, с. 237–248. [Ilyin, A.M., Difference scheme for a differential equation with a small parameter at the highest derivative. Matematicheskie zametki = Mathematical notes, 1969, vol. 6, issue 2, pp. 237–248. (in Russian)]
  18. Дулан, Э., Миллер, Дж., Шилдерс, У., Равномерные численные методы решения задач с пограничным слоем. Москва, Мир, 1983. [Doolan, E., Miller, J., Shielders, W., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem = Uniform Numerical Methods for Solving Boundary Layer Problems. Moscow, Mir, 1983. (in Russian)]
  19. Кочергин, В.С., Кочергин, С.В., Скляр, С.Н., Вычисление компонент полного потока в моделях ветрового движения жидкости. Морской гидрофизический журнал, 2023, т. 39, № 3, с. 299–313. [Kochergin, V.S., Kochergin, S.V., Sklyar, S.N., Calculation of total flow components in models of wind fluid motion. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2023, vol. 39, no. 3, pp. 299–313. (in Russian) EDN: RUBXPZ. DOI: 10.29039/0233-7584-2023-3-299-313

Issue

Section

Mechanics

Pages

34-40

Submitted

2024-03-08

Published

2024-03-27

How to Cite

Kochergin V.S., Kochergin S.V. Computational aspects of constructing field gradients in the numerical implementation of variational algorithms for identifying the parameters of the transfer model. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2024, vol. 21, no. 1, pp. 34-40. DOI: https://doi.org/10.31429/vestnik-21-1-34-40 (In Russian)