Quenching of Cr3+ luminescence in stoichiometric lithium niobium crystals

Authors

  • Avanesov A.G. Kuban State University, Krasnodar, Российская Федерация
  • Galutskiy V.V. Kuban State University, Krasnodar, Российская Федерация
  • Ignatyev B.V. Kuban State University, Krasnodar, Российская Федерация
  • Lebedev V.A. Kuban State University, Krasnodar, Российская Федерация
  • Stroganova E.V. Kuban State University, Krasnodar, Российская Федерация

UDC

53:548

Abstract

Cr3+-doped stoichiometric LiNbO3 crystals exhibit high cross-section of emission and extremely low frequency factor of thermal quenching of luminescence. Under such conditions, radiative transitions of Cr3+ ions compete successfully with non-radiative ones, resulting in a relatively high quantum yield of the broadband luminescence at room temperature. The results obtained in the present study demonstrate that the stoichiometric lithium niobate doped with Cr3+ ions is potential active media for tunable lasers.

Acknowledgement

Работа выполнена при поддержке администрации Краснодарского края и РФФИ р2003юг (03-02-96557).

Author Infos

Andranik G. Avanesov

д-р физ.-мат. наук, заведующий кафедрой экспериментальной физики Кубанского государственного университета

Valeriy V. Galutskiy

аспирант кафедры экспериментальной физики Кубанского государственного университета

Boris V. Ignatyev

канд. физ.-мат. наук, доцент кафедры экспериментальной физики Кубанского государственного университета

Valeriy A. Lebedev

д-р физ.-мат. наук, профессор кафедры экспериментальной физики Кубанского государственного университета

Elena V. Stroganova

канд. физ.-мат. наук, доцент кафедры экспериментальной физики Кубанского государственного университета

References

  1. Bermudez V., Huang L., Hui D., Field S., Dieguez E. Role of stoichiometric point defect in electric-field-poling lithium niobate // Appl. Phys. A. 2000. Vol. 70. P. 591-594.
  2. Furucawa Y., Kitamura K., Takekawa S., Miyamoto A., Terao M., Suda N. Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations // Appl. Phys. Letters. 2000. Vol. 77. No 16. P. 2494-2496.
  3. Polgár K., Péter Á., Kovács L., Corradi G., Szaller Zs. Growth of stoichiometric LiNbO3 single crystals by top seed solution growth method // J. Cryst. Growth. 1997. Vol. 177. P. 211-216.
  4. Stalder M., Bass M., Chai B.H.T. Thermal quenching of fluorescence in chromium-doped fluoride laser crystals // J. Opt. Soc. Am. B. 1992. V. 9. No 12. P. 2271-2273.
  5. Moulton P.F. Spectroscopic and laser characteristics of Ti:Al2O3 // J. Opt. Soc. Amer. B. 1986. Vol. 3. P. 125-133.
  6. McCumber D.E. Theory of phonon-terminated optical masers // Phys. Rev. 1964. Vol. 134. No 2A. P. 299-306.
  7. Сидоров Н.В., Волк Т.Р., Маврин Б.Н., Калинников В.Т. Ниобат лития. Дефекты. Фоторефракция. Колебательный спектр. Поляритоны. М.: Наука, 2003. 256 с.
  8. Stadler M., Bass M., Chai B.H.T. Termal quenching of fluorescence in chromium-doped fluoride laser crystals // J. Opt. Soc. Am. B. 1992. Vol. 9. P. 2271-2273.
  9. Stroganova E.V., Lebedev V.A., Voroshilov I.V., De Backer A., Razdobreev I.M., Brik M.G. Spectoscopic and kinetic investigation of double Cerium-Scandium borates // OSA Trends in Optics and Photonics. 2002. Vol. 68. P. 260-269.
  10. Lai S.T., Chai B.H.T., Long M., Morris R.C. ScBO3:Cr- A room temperature near-infrared tunable laser // IEEE J. Quantum Electr. 1986. Vol. QE-22. No 10. P. 1931-1933.
  11. Lai S.T. Highly efficient emerald laser // J. Opt. Soc. Am. B. 1987. Vol. 4. P. 1286-1292.

Issue

Section

Physics

Pages

59-64

Submitted

2005-10-12

Published

2005-12-23

How to Cite

Avanesov A.G., Galutskiy V.V., Ignatyev B.V., Lebedev V.A., Stroganova E.V. Quenching of Cr3+ luminescence in stoichiometric lithium niobium crystals. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2005, no. 4, pp. 59-64. (In Russian)