Dynamics of atmospheric gaseous pollutants and aerosols at peat fires

Authors

  • Marchuk G.I. Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Российская Федерация
  • Aloyan A.E. Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Российская Федерация
  • Arutyunyan V.O. Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Российская Федерация
  • Yermakov A.N. Institute of Energy Problems of Chemical Physics RAS, Moscow, Российская Федерация

UDC

551.509.68

Abstract

We consider a combined model of the hydrodynamics of mesoscale atmospheric processes and transport of multi-component gaseous pollutants and aerosols in the atmosphere, incorporating photochemical transformations, nucleation, condensation/evaporation, and coagulation. Within this model there were performed numerical calculations of the formation of organic aerosol particles at the given emissions of incomplete biomass burning products resulting from peat fires. We analyze the spatial and temporal variability of the concentrations of gaseous species arising from peat fires and the products of their photochemical reactions in the atmosphere. Over the fire source area, the concentration of peroxide radicals is tens of times greater than their background value, while the nitrogen oxides are available here mainly as NO2. Based on the results of numerical calculations, we study the spatial and temporal variability of accumulated organic substances in the aerosol phase depending on the particle size

Keywords:

mathematical modeling, peat fires, atmospheric chemical processes, organic aerosol, condensation, coagulation, photochemistry

Acknowledgement

Работа выполнена в рамках проектов РФФИ (12-05-00278, 12-05-00236).

Author Infos

Guriy I. Marchuk

академик РАН, почетный директор Института вычислительной математики РАН

e-mail: guri@inm.ras.ru

Artash E. Aloyan

д-р физ.-мат. наук, ведущий научный сотрудник Института вычислительной математики РАН

e-mail: aloyan@inm.ras.ru

Vardan O. Arutyunyan

канд. физ.-мат. наук, научный сотрудник Института вычислительной математики РАН

e-mail: vardan@inm.ras.ru

Aleksandr N. Yermakov

д-р физ.-мат. наук, ведущий научный сотрудник Института энергетических проблем химической физики РАН

e-mail: ayermakov@chph.ras.ru

References

  1. Reid J.S., Hobbs P.V., Ferek R.J., Blake D.R., Martins, J.V., Dunlap M.R., Liousse C. Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil // J. Geophys. Res. 1998. Vol. 103. P. 32059-32080.
  2. Reid J.S., Hyer E.J., Prins E.M., Westphal D.L., Zhang J., Wang J., Christopher S.A., Curtis C.A., Schmidt C.C., Eleuterio D.P., Richardson K.A., Hoffman Jay P. Global monitoring and forecasting of biomass-burning smoke: description and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program // IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing. 2009. Vol. 2. No. 3. P. 144-162
  3. Masciandaro G., Ceccanti B. Assessing soil quality in different agroecosystems through biochemical and chemico-structural properties of humic substances // Soil and Tillage Research. 1999. Vol. 51. No. 1-2. P. 129-137
  4. Frandsen W.H. Ignition probability of organic soils // Canadian Journal of Forest Research 1997. Vol. 27. P. 1471-1477.
  5. Crutzen P.J., Heidt L.E., Krasnec J.P., Pollock W.H., Seiler W. Biomass burning as a source of atmospheric gases CO, H2 , N2O, NO, CH3Cl and COS // Nature. 1979. Vol. 282. P. 253-256.
  6. Seiler W., Crutzen P.J. Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning // Climatic Change. 1980. No. 2. P. 207-247.
  7. Van der Werf G.R., Randerson J.T., Giglio L., Collatz G.J., Mu M., Kasibhatla P.S., Morton D.C., DeFries R.S., Jin Y., Van Leeuwen T.T. Global fire emissions and the contribution of deforestation (GFED), savanna, forest, agricultural, and peat fires (1997-2009) // Atmos. Chem. Phys. Discuss. 2010. Vol. 10. P. 16153-16230.
  8. Akagi S.K., Yokelson R.J., Wiedinmer C., Alvaradoo M.J., Reid J.S., Karl T., Crounse J.D., Wennberg P.O. Emission factors for open and domestic biomass burning for use in atmospheric models // Atmos. Chem. Phys. Discuss. 2010. Vol. 10. P. 27523-27602.
  9. Гришин А.М. О математическом моделировании торфяных пожаров // Вестник Томского государственного университета. 2008. №3(4). C. 85-95.
  10. Алоян А.Е., Арутюнян В.О. Моделирование динамики аэрозолей и формирование облачности при лесных пожарах // Экологический вестник научных центров Черноморского экономического сотрудничества. 2008. №3. С. 5-19.
  11. Aloyan A.E., Egorov V.D., Marchuk, G.I., Piskunov V.N. Aerosol formation mathematical modelling with consideration for condensation kinetics. // Russ. J. Num. Analysis Math. Modeling. 1992. Vol. 7. No. 7. P. 457-471.
  12. Aloyan A.E., Arutyunyan V.O., Lushnikov A.A., Zagaynov V.A. Transport of coagulating aerosol in the atmosphere // J. Aerosol Sci. 1997. Vol. 28. No. 1. P. 67-85.
  13. Алоян А.Е., Пискунов В.Н. Моделирование региональной динамики газовых примесей и аэрозолей // Изв. РАН: Физика атмосферы и океана. 2005. Т. 41. №3. C. 328-340.
  14. Алоян А.Е. Моделирование динамики аэрозолей при лесных пожарах // Изв. РАН. Физика атмосферы и океана. 2009. Т. 45. № 1. С. 62-75.
  15. Алоян А.Е. Моделирование динамики и кинетики газовых примесей и аэрозолей в атмосфере. М.: Наука. 2008. 201 c.
  16. Aloyan A.E. Numerical modeling of the interaction of gas species and aerosols in the atmospheric dispersive systems // Russ. J. Num. Analysis Math. Modeling. 2000. Vol. 15. №3-4. P. 211-224.
  17. Алоян А.Е., Арутюнян В.О., Ермаков А.Н. Динамика газовых примесей и аэрозолей при лесных и торфяных пожарах // Труды 16-ой международной школы-конференции молодых ученых. Москва, 2012, C. 5-9.
  18. Stockwell W.R., Kirchner F., Kuhn M., Seefeld S. A New Mechanism for Regional Atmospheric Chemistry Modeling // J. Geophys. Res. 1997. Vol. 102. P. 25847-25879.
  19. Mao J., Carouge C., Evans M., Millet D. Paul Palmer group. GEOS-Chem Chemical Mechanism, http://acmg.seas.harvard.edu/geos/wiki_docs/chemistry/chemistry_updates_v6.pdf. Version 8-02-04.
  20. NIST Chemistry WebBook (http://webbook.nist.gov/chemistry/).
  21. DDBST (Dortmund Date Bank Software and Separation Technology, http://www.ddbst.de).
  22. Nannoolal Y., Rarey J., Ramjugernath D., Cordes W. Estimation of pure component properties. Part 4: Estimation of the saturated liquid viscosity of non-electrolyte organic compounds via group contributions and group interactions // Fluid Phase Equilibria. 2004. Vol. 226. P. 45-63.
  23. Stein S. E., Brown R.L. Estimation of Normal Boiling Points from Group Contributions // J. Chem. Inf. Comput. Sci. 1994. Vol. 34. P. 581-587.
  24. Myrdal P.B., Yalkowsky S.H. Estimating pure component vapor pressures of complex organic molecules // Ind. Eng. Chem. Res. 1997. Vol. 36. P. 2494-2499.
  25. Pankow J.F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere // Atmos. Environ. 1994. Vol. 28. P. 185-188.
  26. Pankow J.F. An absorption model of gas/particle partitioning involved in the formation of 10 secondary organic aerosol // Atmos. Environ. 1994. Vol. 28. P. 189-193.
  27. Piskunov V.N., Golubev A.I., Goncharov E.A., Ismailova N.A. Kinetic modeling of composite particles // J. Aerosol Sci. 1997. Vol. 28. P. 1215-1231.
  28. Saarikoski S., Sillanpa M., Sofiev M., Timonen H., Saarnio K., Teinila K., Karppinen A., Kukkonen J., Hil R. Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006:Experimental and modeling assessments // Atmos. Environ. 2007. Vol. 41. P. 3577-3589.
  29. Zhang Y., Pun B., Vijayaraghavan K., Wu S-Yu., Seigneur C., Pandis S.N., Jacobson M.Z., Nenes A., Seinfeld J.H. Development and application of the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) // J. Geophys. Res. 2004. Vol. 109. P. D01202.
  30. Sander S.P., Golden D.M., Kurylo M.J., Moortgat G.K., Wine P.H., Ravishankara A.R., Kolb C.E., Molina M.J., Finlayson-Pitts B.J., Huie R.E., Orkin V.L. Chemical kinetics and photochemical data for use in Atmospheric Studies Evaluation Number 15 // JPL Publication 06-2. 2006.

Issue

Pages

85-100

Submitted

2013-08-14

Published

2013-09-23

How to Cite

Marchuk G.I., Aloyan A.E., Arutyunyan V.O., Yermakov A.N. Dynamics of atmospheric gaseous pollutants and aerosols at peat fires. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2013, no. 3, pp. 85-100. (In Russian)