Kinematic characteristics of internal waves in the central Atlantic investigation according to CTD-profiling data

Authors

  • Grigorenko K.S. Institute of Arid Zones of the Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, Российская Федерация
  • Khartiev S.M. Southern Federal University, Rostov-on-Don, Российская Федерация
  • Solovieva A.A. Institute of Arid Zones of the Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, Российская Федерация
  • Ermoshkin A.V. Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Российская Федерация

UDC

551.466

Abstract

Internal waves' kinematic characteristics depend strongly on the vertical structure of the upper ocean layer's density. In this paper, the results of the hydrophysical fields' characteristics' measurements calculated from the CTD-data obtained in the 36 cruise of the "Akademik Sergey Vavilov" research vessel in October-November 2012 are presented. The mathematical formulation of the problem is reduced to the solution of the homogeneous boundary value problem, which is solved as a problem of the modal analysis. The most significant anomalous changes in the behavior of the dispersion curves were observed in the area of the polygon "Kane pass". The comparison of results of numerical calculations of the internal waves' kinematic characteristics with the data of the ocean surface radar sensing was conducted at this polygon. The σ, k values found by the radar sensing practically coincide with the coordinates of the point on the dispersion curve corresponding to the internal waves' first mode (relative error is 0.8 %). Thus we can draw a conclusion that the internal waves were recorded at the investigated polygon by detecting their surface exposure and the radar is an effective tool of their remote detection. The depth of the picnocline in the area of the polygon "pass Kane" was analytically determined within the framework of two-layer model of the linear theory of internal waves, based on the use of the ocean surface radar sensing and the average seasonal values of the density drop. At the comparison of the CTD-measurements with the radar data, relative error was 14 %. Similar analytical investigation based only on the results of visual observation of slicks on the ocean surface and the Beaufort scale were held 14/11/12 in the area of the polygon “channel Vema”. A comparison of analytically deduced theoretical estimates of the thickness of the upper stratified layer with the CTD-data showed a rather good result, for the certain situation, (error does not exceed 15 %).

Keywords:

internal waves, vertical CTD-profiling, density stratification models, internal waves dynamics boundary problems, dispersion curves, slicks, radar stations

Author Infos

Klim S. Grigorenko

младший научный сотрудник Института аридных зон Южного научного центра РАН

e-mail: klim_grig@mail.ru

Sergey M. Khartiev

канд. физ.-мат. наук, доцент кафедры океанологии Южного федерального университета

e-mail: grigorenko@ssc-ras.ru

Anna A. Solovieva

младший научный сотрудник Института аридных зон Южного научного центра РАН

e-mail: microsol@list.ru

Aleksey V. Ermoshkin

младший научный сотрудник Института прикладной физики РАН

e-mail: eav@hydro.appl.sci-nnov.ru

References

  1. Khristoforov G.N. Izmeneniye strukturi morskogo vetrovogo volneniya v zone poverchnostnogo slika [Changes in the structure of the sea wind waves in the area of surface slicks]. Vozdeystvie krupnomasshtabnych vnutrennich voln na morskuyu poverchnost [The impact of large-scale internal waves on the sea surface]. Gorkiy, IPF AN SSSR Publ., 1982, pp. 189-208. (In Russian)
  2. Bondur V.G., Morozov E.G., Belchanskiy G.I., Grebenuk U.V. Radiolokacionnaya syemka I chislennoe modelirovanie vnutrennih prilivnih voln v shelfovoy zone [Radar imagery and numerical modeling of internal tidal waves in a shelf zone]. Issledovaniya Zemli iz kosmosa [Investigation of Earth from space], 2006, no. 2, pp. 51-63. (In Russian)
  3. Khartiev S.M., Cherkesov L.V. Vliyanie tonkoj stratifikatsii na proyavlenie vnutrennikh voln, generiruemykh poverkhnostnymi vozmushheniyami [Influence of of thin stratification on the display of internal waves generated by surface perturbations]. Teoriya okeanicheskikh protsessov [The theory of oceanic processes]. Sevastopol, MHI AN USSR Publ., 1981, pp. 70-74. (In Russian)
  4. Morozov E., Demidov A., Tarakanov R., Zenk W. Abyssal Channels in the Atlantic Ocean. Water Structure and Flows, Springer, 2010, 289 p.
  5. Cherkesov L.V. Poverkhnostnye i vnutrennie volny [Surface and internal waves]. Kiev, Naukova dumka Publ., 1973, 364 p. (In Russian)
  6. Solov'ev A.N., Khartiev S.M., Solov'eva A.A., Grigorenko K.S., Matishov D.G. Issledovanie kharakteristik vnutrennikh gravitatsionnykh i zvukovykh voln na osnove "Klimaticheskogo Atlasa Arktiki 2004" [Internal gravity and sound waves characteristics investigation based on the "Arctic Climate Atlas 2004"]. Vestnik Yuzhnogo nauchnogo tsentra RAN [Bulletin SSC RAS], 2010, vol. 6, no. 1, pp. 24-32. (In Russian)
  7. Khartiev S.M., Morozov E.G., Grigorenko K.S., Matishov D.G., Solov'eva A.N., Solov'eva A.A. Vnutrennie volny v stratifitsirovannom more pri nalichii sloev plotnostnykh inversij [Internal Waves in a Stratified Sea with Layers of Density Inversions]. Doklady Akademii nauk [Reports of the Academy of Sciences of Russia], 2013, vol. 448, no. 1, pp. 92-96. (In Russian)
  8. Goncharov V.V. O nekotorykh osobennostyakh vnutrennikh voln v okeane [Some peculiarities of internal waves in the ocean]. Tsunami i vnutrennie volny [Tsunami and internal waves]. Sevastopol: MHI AN USSR Publ., pp. 87-96. (In Russian)
  9. Morozov E.G. Semidiurnal internal wave global field. Deep Sea Research, 1995, vol. 42, no. 1, pp. 135-148.
  10. New A.L., Magalhaes J.M., da Silva J.C.B. Internal solitary waves on the Saya de Malha bank of the Mascarene Plateau: SAR observations and interpretation. Deep Sea Research Part I: Oceanographic Research Papers. 2013, September, vol. 79, pp. 50-61.
  11. Monin A.S., Kamenkovich V.M., Kort V.G. Izmenchivost' Mirovogo okeana [The variability of the World Ocean]. Leningrad, Gidrometeoizdat Publ., 1974. 262 p. (In Russian)
  12. Cherkesov L.V., Ivanov V.A., Khartiev S.M. Vvedenie v gidrodinamiku i teoriyu voln [Introduction to hydrodynamics and the theory of waves]. St. Petersburg, Gidrometeoizdat Publ., 1992, 264 p. (In Russian)
  13. Cherkesov L.V., Potetunko E.N., Shubin D.S. Reconstruction of ocean density distribution from its wave spectrum. Int. J. Fluid Mech. Res. 30. 2003, pp. 11-23.
  14. Soloviev A.N., Khartiev S.M., Matishov D.G., Grigorenko K.S., Solovieva A.A. Direct and Inverse Problems of Internal and Sound Waves Propagation in the Ocean with a Complex Stratification Structure. 2013 International Symposium on "Physics and Mechanics of New Materials and Underwater Applications" (PHENMA 2013). Kaohsiung, Taiwan, June 5-8, 2013. Abstracts {\&} Schedule, pp. 101.
  15. Ermakov S.A. Laboratornye issledovaniya vozdejstviya vnutrennikh voln na poverkhnostnoe volnenie [Laboratory investigations of the internal waves impact on the surface waves]. Vozdejstvie krupnomasshtabnykh vnutrennikh voln na morskuyu poverkhnost' [The impact of large-scale internal waves on the sea surface]. Gorkiy, IPF AN SSSR Publ., 1982, pp. 168-188. (In Russian)

Issue

Pages

41-50

Submitted

2015-01-30

Published

2015-03-26

How to Cite

Grigorenko K.S., Khartiev S.M., Solovieva A.A., Ermoshkin A.V. Kinematic characteristics of internal waves in the central Atlantic investigation according to CTD-profiling data. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, no. 1, pp. 41-50. (In Russian)