Numerical calculation of nonisothermal laminar flow around a circular cylinder wrapped with a permeable ring

Authors

  • Morenko I.V. Institute of Mechanics and Engineering, Kazan Science Center, Russian Academy of Sciences, Kazan, Российская Федерация
  • Snigerev B.A. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Российская Федерация

UDC

536.242

Abstract

Modern technologies allow to create new porous materials with the different matrix structure. One of the areas of their practical use is to apply to the body a porous permeable ring to intensify heat transfer or alternatively, for thermal insulation. In this paper the separated nonisothermal flow of a viscous incompressible fluid around a circular cylinder coated with a porous permeable layer with a given thickness is investigated numerically at moderate Reynolds numbers. The layer is made of high thermal conductivity and thermal insulation materials. To describe the fluid motion used non-stationary Navier-Stokes and energy equations. It is assumed that the material permeable layer has a corpuscular structure. The filtration flow in the porous layer is determined by the non-linear two-term Ergun law, which takes into account the inertial effects. In the numerical experiments varies of Reynolds number and Darcy number. The drag coefficient of the body, the length of the vortex wake, the surface temperature of the porous layer, the Nusselt number calculated. It is found that the flow separation can be observed with both core and surface layer depending on the permeability. The length of the vortex area increases with increasing Reynolds number and decreases with increasing Darcy number. The effect of matrix permeability and thermal conductivity of the material on the heat exchange of the body and the liquid is analyzed.

Keywords:

permeable porous layer, laminar flow, heat transfer

Author Infos

Irina V. Morenko

канд. техн. наук, старший научный сотрудник Института механики и машиностроения Казанского научного центра РАН

e-mail: morenko@imm.knc.ru

Boris A. Snigerev

д-р техн. наук, ведущий научный сотрудник Института механики и машиностроения Казанского научного центра РАН, ведущий научный сотрудник кафедры теоретических основ теплотехники Казанского национального исследовательского технического университета им. А.Н. Туполева

e-mail: snigerev@imm.knc.ru

References

  1. Popov I.A. Gidrodinamika i teploobmen v poristyih teploobmennyih elementah i apparatah. Intensifikatsiya teploobmena [Hydrodynamics and heat transfer in porous heat transfer elements and devices. Intensification of heat exchange]. Kazan, Tsentr innovazionnyih tehnologiy, 2007, 240 p. (In Russian)
  2. Kutateladze S.S. Osnovyi teorii teploobmena [Bases of the theory of heat transfer]. Moscow, Atomizdat, 1979, 416 p. (In Russian)
  3. Zhukauskas A.A. Konvektivnyiy perenos v teploobmennikah [Convective transfer in heat exchangers]. Moscow, Nauka, 1982, 472 p. (In Russian)
  4. Nield D.A., Bejan A. Convection in Porous Media. Springer, 1992, 408 p.
  5. Ozkan G.M., Oruc V., Akilli H. Sahin B. Flow around a cylinder surrounded by a permeable cylinder in shallow water. Exp. Fluids, 2012, no. 53, pp. 1751-1763. doi: 10.1007/s00348-012-1393-2
  6. Gözmen B., Akilli H., Şahin B. Vortex control of cylinder wake by permeable cylinder. Journal of the Faculty of Engineering and Architecture, 2013, vol. 28, no. 2, pp. 77-85.
  7. Sobera M.P., Kleijn C.R. T-RANS simulations of subcritical flow with Heat transfer past a circular cylinder surrounded by a thin porous layer. Flow Turbulence Combust, 2008, no. 80, pp. 531-546. doi: 10.1007/s10494-008-9150-6
  8. Budaraju S., Stewart W.E., Porter W.P. Prediction of forced ventilation in animal fur from a measured pressure distribution. Proc. R. Soc. Lond. B, 1994, no. 256, pp. 41-46.
  9. Klausmann K., Ruck B. Flow around circular cylinders with partial porous coating. Fachtagung "Lasermethoden in der Strömungsmesstechnik", 9-11 September 2014, Karlsruhe, pp. 15.1-15.8.
  10. Lin G., Liu J. Hydrodynamic performance of combined cylinders structure with dual arc-shaped porous outer walls. Sci. China-Phys. Mech. Astron, 2012, no. 55, pp. 1963-1977.
  11. Rashidi S., Tamayol A., Valipour M.S., Shokri N. Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. International Journal of Heat and Mass Transfer, 2013, no. 63, pp. 91-100.
  12. Morenko I.V., Fedyaev V.L. Osobennosti obtekaniya tsilindra dvuhfaznyim potokom [Features of two-phase flow around a circular cylinder]. \textit{Ekologicheskiy vestnik nauchnyih tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva} [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2010, no. 4, pp. 52-58. (In Russian)
  13. Yu P., Zeng Y., Lee T.S., Chen X.B., Low H.T. Steady flow around and through a permeable circular cylinder. Computers & Fluids, 2011, no. 42, pp. 1-12. doi:10.1016/j.compfluid.2010.09.040

Issue

Pages

71-76

Submitted

2015-05-18

Published

2015-06-25

How to Cite

Morenko I.V., Snigerev B.A. Numerical calculation of nonisothermal laminar flow around a circular cylinder wrapped with a permeable ring. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2015, no. 2, pp. 71-76. (In Russian)