Identification of properties of the inhomogeneous viscoelastic circular plate

Authors

  • Anikina T.A. Don State Technical University, Rostov-on-Don, Российская Федерация
  • Bogachev I.V. Southern Federal University, Rostov-on-Don, Российская Федерация
  • Vatulyan A.O. Southern Federal University, Rostov-on-Don, Российская Федерация
  • Dudarev V.V. Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences, Vladikavkaz, Republic of North Ossetia - Alania, Российская Федерация

UDC

539.3

Abstract

In the present research, we construct a model of significantly inhomogeneous viscoelastic circular plate clamped along its contour. We consider the steady vibrations of the plate caused by a load distributed on a circumference of a certain radius at the plate's surface. To take into account the damping effect of viscoelastic materials, we use the standard model of viscoelastic body based on the theory of complex modules. To simulate the plate's deformation behavior, we use the Kirchhoff-Love hypothesis. With the use of the variational principle of Hamilton-Ostrogradskii, we derive the wave equation and the boundary conditions for the plate. Two inverse problems on the identification of the instant and long modules included in the complex modulus are formulated. The first inverse problem uses the additional data on the given function of frequency flexure of the plate. The second one uses the measured function values at a single point for some definite set of frequencies. In the second section by methods for solving formulated direct and inverse problems are described. The first inverse problem is linear, and it is solved using the Galerkin method; a specific set of basis functions is selected for that. To solve the second problem which is significantly nonlinear and ill-posed, we develop a special iterative procedure based on the linearization method combining the use of the Galerkin method to solve direct problems at its every step and the solution of the systems of Fredholm's integral equations of the 1st kind; to regularize the latter, we employed the Tikhonov regularization method. The third section of proposed of approaches are illustrated by a representative set of computational experiments where both monotonic and non-monotonic functions are reconstructed. The error does not exceed 6% in all of the experiments conducted indicating that the proposed approaches are efficient enough in solving such problems.

Keywords:

identification, heterogeneity, viscoelasticity, complex modulus, circular plate, iterative process, regularization

Acknowledgement

Работа выполнена при поддержке Российского фонда фундаментальных исследований (16-31-00144 мол-а, 16-01-00354 А) и Программы фундаментальных исследований по стратегическим направлениям развития науки Президиума РАН №1.

Author Infos

Tatyana A. Anikina

канд. физ.-мат. наук, заместитель начальника отдела по учебной работе Авиационного колледжа Донского государственного технического университета

e-mail: atanusha@mail.ru

Ivan V. Bogachev

канд. физ.-мат. наук, младший научный сотрудник кафедры теории упругости Института математики, механики и компьютерных наук им. И.И. Воровича Южного федерального университета

e-mail: bogachev89@yandex.ru

Aleksandr O. Vatulyan

д-р физ.-мат. наук, профессор кафедры теории упругости Института математики, механики и компьютерных наук им. И.И. Воровича Южного федерального университета, заведующий отделом дифференциальных уравнений Южного математического института

e-mail: vatulyan@math.rsu.ru

Vladimir V. Dudarev

канд. физ.-мат. наук, профессор кафедры теории упругости Института математики, механики и компьютерных наук им. И.И. Воровича Южного федерального университета, научный сотрудник отдела дифференциальных уравнений Южного математического института

e-mail: dudarev_vv@mail.ru

References

  1. Vatul'yan A.O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse problems in mechanics of solids]. Moscow, Fizmatlit Publ., 2007, 223 p. (In Russian)
  2. Kristensen R. Vvedenie v mekhaniku kompozitov [Introduction to the mechanics of composites]. Moscow, Mir Publ., 1974, 338 p. (In Russian)
  3. Timoshenko S.P., Voynovskiy-Kriger S. Plastinki i obolochki [The plates and the shells]. Moscow, Fizmatgiz Publ., 1963, 635 p. (In Russian)
  4. Papkov S.O. Kolebaniya pryamougol'noy ortotropnoy plastiny so svobodnymi krayami: analiz i reshenie beskonechnoy sistemy [The vibrations of an orthotropic rectangular plate with free edges: the analysis and solution of the infinite system]. Akust. zhurn. [Acoustical physics], 2015, vol. 61, no. 2, pp. 152-160. (In Russian)
  5. Leonenko D.V. Kolebaniya krugovykh trekhsloynykh plastin na uprugom osnovanii Pasternaka [The vibrations of circular sandwich plates on the Pasternak elastic foundation]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva. [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2014, no. 1, pp. 59-63. (In Russian)
  6. Khodzhaev D.A., Eshmatov B.Kh. Nelineynye kolebaniya vyazkouprugoy plastiny s sosredotochennymi massami [Nonlinear vibrations of a viscoelastic plate with concentrated masses]. Prikladnaya mekhanika i tekhnicheskaya fizika. [Journal of Applied Mechanics and Technical Physics], 2007, vol. 48, no .6, pp. 158-169. (In Russian)
  7. Chuanmeng Y., Guoyong J., , Xinmao Y., Zhigang L. A modified Fourier-Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials. International Journal of Mechanical Sciences, 2016, vol. 106, pp. 1-18.
  8. Kima S., Kreiderb K.L. Parameter identification for nonlinear elastic and viscoelastic plates. Applied Numerical Mathematics, 2006, vol. 56, no. 12, pp.1538-1554.
  9. Vatul'yan A.O., Belyak O.A., Sukhov D.Yu., Yavruyan O.V. Obratnye i nekorrektnye zadachi [Inverse and incorrect problems]. Rostov-on-Don, YuFU Publ., 2011, 232 p. (In Russian)
  10. Vatul'yan A.O., Solov'ev A.N. Ob iteratsionnom podkhode v obratnykh zadachakh teorii uprugosti [An iterative approach to inverse problems of the theory of elasticity]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2006, no. 1, pp. 23-29. (In Russian)
  11. Anikina T.A., Vatul'yan A.O., Uglich P.S. Ob opredelenii peremennoy zhestkosti krugloy plastiny [Determination of the circular plates of variable hardness]. Vychislitel'nye tekhnologii [Computational technologies], 2012, vol. 17, no. 6. pp. 26-35. (In Russian)
  12. Bogachev I.V., Vatul'yan A.O., Yavruyan O.V. Rekonstruktsiya zhestkosti neodnorodnoy uprugoy plastiny [Reconstruction of non-uniform stiffness elastic plate]. Akusticheskiy zhurnal [Acoustical physics], 2016, vol. 62, no. 3, pp. 369-374. (In Russian)
  13. Vatulyan A.O., Yavruyan O.V., Bogachev I.V. Reconstruction of inhomogeneous properties of orthotropic viscoelastic layer. Int. J. of Solids and Structures, 2014, vol. 51. no. 11-12, pp. 2238-2243.
  14. Fletcher K. Chislennye metody na osnove metoda Galerkina [Numerical methods based on the Galerkin method]. Moscowm, Mir Publ., 1988, 352 p. (In Russian)
  15. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving ill-posed problems]. Moscow, Nauka Publ., 1979, 288 p. (In Russian)

Issue

Pages

10-18

Submitted

2016-04-01

Published

2016-06-30

How to Cite

Anikina T.A., Bogachev I.V., Vatulyan A.O., Dudarev V.V. Identification of properties of the inhomogeneous viscoelastic circular plate. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 2, pp. 10-18. (In Russian)