Electrokinetic effects near the space-inhomogeneous electroactive surfaces

Authors

  • Kiriy V.A. Financial University under the government of the Russian Federation, Krasnodar branch, Krasnodar, Российская Федерация
  • Kalaydin E.N. Financial University under the government of the Russian Federation, Krasnodar branch, Krasnodar, Российская Федерация

UDC

537.6

Abstract

This manuscript considers the model of non-homogeneous membrane having alternating conductive and non-conductive areas. Numerically investigated the hydrodynamics near a membrane under the influence of an external electric field. The effect on the system two mechanisms — Dukhina vortex formation and Rubinstein-Saltzman. It is shown that the predominant mechanism Dukhina except for a narrow region of potential difference values. It was found that for a small amount of non-conductive areas and the main contribution of the system impedance makes the electrolyte resistance, and at large - the conductivity of the membrane. Detected a pronounced maximum current through the membrane, depending on the coverage ratio, where the current intensification can reach 60%.

Keywords:

system Nernst-Planck-Poisson-Stokes, heterogeneous membrane, overlimiting current, electrokinetic instability, electrolyte

Acknowledgement

Работа выполнена при поддержке РФФИ (15-58-45123-Инд_а, 14-08-01171_а).

Author Infos

Vladimir A. Kiriy

преподаватель кафедры математики и информатики Краснодарского филиала Финансового университета при Правительстве Российской Федерации

e-mail: vladimir@kiriy.ru

Evgeniy N. Kalaydin

д-р физ.-мат. наук, заведующий кафедрой математики и информатики Краснодарского филиала Финансового университета при Правительстве Российской Федерации

e-mail: ENKalaydin@fa.ru

References

  1. Chang H.-C. , Yossifon G., Demekhin E.A. Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux. Annu. Rev. Fluid Mech., 2012, vol. 44, pp. 401-426.
  2. Belova E. I., Lopatkova G. Yu., Pismenskaya N. D., Nikonenko V. V., Larchet C., Pourcelly G. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B, 2006, vol. 110, pp. 13458-13469.
  3. Slouka Z., Senapati S., Yan Yu., Chang H.-C. Charge inversion, water splitting and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures. Langmuir, 2013, vol. 29, pp. 8275-8283.
  4. Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E, 2000, vol. 62, pp. 2238.
  5. Rubinstein I., Zaltzman B. Electro-osmotic slip and electroconvective instability. J. Fluid Mech., 2007, vol. 579, pp. 173.
  6. Demekhin E.A., Shapar' E.M., Lapchenko V.V. K vozniknoveniyu elektrokonvektsii v polupronitsaemykh elektricheskikh membranakh [To the emergence of electroconvection in semipermeable electric membranes]. Doklady akademii nauk [Rep. of the Academy of Sciences], 2008, vol. 421, no. 4, pp. 478-481. (In Russian)
  7. Demekhin E. A., Shelistov V. S., Polyanskikh S. V. Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability. Phys. Rev. E, 2011, vol. 84, pp. 036318.
  8. Demekhin E.A., Nikitin N.V., Shelistov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Phys. Fluids, 2013, vol. 25, no. 6, pp. 12201(1-29).
  9. Demekhin E.A., Nikitin N.V., Shelistov V.S. Three-dimensional coherent structures of electrokinetic instability. Phys. Rev. E, 2014, vol. 90, no. 1, pp. 013031(1-9).
  10. Dukhin S.S. Electrokinetic phenomena of the second kind and their applications? Adv. Colloid Interface Sci., 1991, vol. 35, pp. 173-196.
  11. Chang H.-C., Demekhin E. A. and Shelistov V.S. Competition between Dukhin's and Rubinstein's electrokinetic modes. Phys. Rev. E, 2012, vol. 86, pp. 046319.

Issue

Pages

43-49

Submitted

2016-08-31

Published

2016-09-30

How to Cite

Kiriy V.A., Kalaydin E.N. Electrokinetic effects near the space-inhomogeneous electroactive surfaces. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 3, pp. 43-49. (In Russian)