Self-similar solutions of the problem of thermal convection, averaged over a thin layer of the evaporating liquid

Authors

  • Sakharova L.V. Rostov State University of Economics, Rostov-on-Don, Российская Федерация

UDC

004.942

Abstract

We obtain some types of self-similar substitutions for thermal convection problem, averaged over a thin layer, extended wave case. The problem is the asymptotic model of dry non-viscous, no temperature wire drops and is averaging approach Oberbeck-Boussinesq on a thin layer of an evaporating liquid. The problem is the use of simulation in modern processes involving heat and mass transfer processes: in medical diagnosis, pharmacological studies, crystallography, printing, etc. For the construction of self-similar solutions of the original problem moves to the Riemann invariants. To the resulting problem characteristic relations that determine the self-substitution were obtained. These substitutions allowed to reduce the dimension of the problem and reduce it to a system of ordinary differential equations (ODE). Built ODE solutions - self-similar solution of the problem of thermal convection for extended drops that determine height drops by osredennuyu toschine mass transfer rate and heat flux as a function of time and location. Established the applicability of the self-similar solutions to the simulation of different situations: the evaporation of the droplet and its condensation, pinning, ie, securing the borders of three-phase contact on a rough surface, and depinning, ie her separation; different geometric configurations drop at the initial time. Built similar solution exponential type describes a situation where the liquid layer thickness decreases exponentially (evaporation) or increases (condensing) with time for a given law. In particular, the rate of decrease (increase) may be determined by the flow of fluid through a fixed boundary phase contact (drain). The resulting solution of traveling wave type corresponds to the case when the liquid is drying up direction of the external mechanical action, causing fluid flow at a constant rate.

Keywords:

mathematical model, similar solutions, drop, evaporation-condensation

Author Info

Lyudmila V. Sakharova

д-р физ.-мат. наук, доцент кафедры Фундаментальной и прикладной математики Ростовского государственного экономического университета (РИНХ)

e-mail: L_Sakharova@mail.ru

References

  1. Gol'brajkh E., Rapis E.G., Moiseev S.S. O formirovanii uzora treshhiny v svobodno vysykhayushhej plenke vodnogo rastvora belka [The formation of pattern cracks freely in the dry film of the aqueous solution of the protein]. Zhurnal tekhnicheskoj fiziki [Technical Physics Journal], 2003, vol. 73, iss. 10, pp. 116-121. (In Russian)
  2. Shabalin V.N., Shatokhina S.N. Morfologiya biologicheskikh zhidkostej cheloveka [Morphology of human biological fluids]. Moscow, Khrizostom Publ., 2001, 304 p. (In Russian)
  3. Yushhenko A.A., Daudova A.D., Ayupova A.K., Urlyapova N.G., Shatokhina S.N. Sposoby otsenki obshhetoksicheskogo dejstviya lekarstvennykh sredstv na organizm [Methods for evaluation of General toxic action of drugs on the body]. Pat. RF 2232387, 2004. B.I. #17. (In Russian)
  4. Rapis E. Belok i zhizn' (samosborka i simmetriya nanostruktur belka) [Protein and life (self-assembly and symmetry of protein nanostructures)]. Ierusalim, Moscow, ZL. Milta-PKP GIT Pub., 2002. 257 p. (In Russian)
  5. Abramchuk S.S., Khokhlov A.R., Iwataki T., Oana H., Yoshikawa K. Evaporative Self-assembly of Ordered Complex Structures. Europhys. Lett., 2001, vol. 55, pp. 294-300.
  6. Harris D.J., Hu H., Conrad J.C., Lewis J.A. Patterning colloidal films via evaporative lithography. Physical Review Letters, 2007, vol. 98, no. 14, pp. 148301.
  7. Xu J., Xia J., Hong S.W. et al. Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge. Physical Review Letters, 2006, vol. 96, no. 6, pp. 066104.
  8. Takhistov P., Chang H. Complex Stain Morphologies. Industrial and engineering chemistry research, 2002, vol. 41, no. 25, pp. 6256-6269.
  9. Helseth L.E., Fischer T.M. Particle interactions near the contact line in liquid drops. Physical Review E, 2003, vol. 68, no. 4, pp. 042601.
  10. Rieger B., van den Doel L.R., van Vliet L.J. Ring formation in nanoliter cups: Quantitative measurements of flow in micromachined wells. Physical Review E., 2003, vol. 68, no. 3, pp. 036312.
  11. Bigioni T.P., Lin X.M., Nguyen T.T., Corwin E.I., Witten T.A., Jaeger H.M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature materials, 2006, vol. 5, no. 4, pp. 265-270.
  12. Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, vol. 389, pp. 827-829.
  13. Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A. Contact line deposits in an evaporating drop. Physical Review E, 2000, vol. 62, pp. 756-765.
  14. Govor L.V., Reiter G., Parisi J., Bauer G.H.. Self-assembled nanoparticle deposits formed at the contact line of evaporating micrometer-size droplets. Phys. Rev. E, 2004, vol. 69, pp. 061609.
  15. Parisse F., Allain C. Shape Changes of Colloidal Suspension Droplets during Drying. J. Phys. II France, 1996, vol. 6, pp. 1111-1119.
  16. Maki K. L., Kumar S. Fast Evaporation of Spreading Droplets of Colloidal Suspensions. Langmuir, 2011, vol. 27, no. 18, pp. 11347-11363.
  17. Tarasevich Y.Y., Vodolazskaya I.V., Sakharova L.V. Mathematical modeling of pattern formation caused by drying of colloidal film under a mask. Eur. Phys. J. E, 2016, vol. 39, no. 2, p. 26. DOI 10.1140/epje/i2016-16026-5.
  18. Widjaja E., Harris M. Particle deposition study during sessile drop evaporation. AIChE J., 2008, vol. 54, no. 9, pp. 2250-2260.
  19. Tarasevich Yu.Yu., Pravoslavnova D.M. Kachestvennyj analiz zakonomernostej vysykhaniya kapli mnogokomponentnogo rastvora na tverdoj podlozhke [Qualitative analysis of the regularities of the drying of multicomponent solution drops on solid padlock]. Zhurnal tekhnicheskoj fiziki [Technical Physics Journal], 2007, vol. 77, iss. 2, pp. 17-21. (In Russian)
  20. Tarasevich Yu.Yu., Isakova O.P., Kondukhov V.V., Savitskaya A.V. Vliyanie rezhima ispareniya na prostranstvennoe pereraspredelenie komponentov v isparyayushhejsya kaple zhidkosti na tverdoj gorizontal'noj podlozhke [The effect of the evaporation on the spatial redistribution of components in the evaporating liquid droplet on a horizontal solid substrate]. Zhurnal tekhnicheskoj fiziki [Technical Physics Journal], 2010, vol. 80, iss. 5, pp. 45-53. (In Russian)
  21. ZHukov M.Yu., SHiryaeva E.V., Polyakova N.M. Modelirovanie isparenie kapli zhidkosti [Modeling of the evaporation of drops of liquid]. Rostov-on-Don, Yuzhniy federal'niy universitet Publ., 2015, 208 p. (In Russian)
  22. Barenblatt G.I. Podobie, avtomodel'nost', promezhutochnaya asimptotika. Teoriya i prilozheniya k geofizicheskoj gidrodinamike [Similarity, automodelisme, intermediate asymptotics. Theory and applications to geophysical fluid dynamics]. Leningrad, Gidrometioizdat Publ., 1982, 256 p. (In Russian)
  23. Rozhdestvenskij B.L., Yanenko N.N. Sistemy kvazilinejnykh uravnenij i ikh prilozheniya k gazovoj dinamike [Systems of quasilinear equations and their applications to gas dynamics]. Moscow, Nauka Publ., 1978, 687 p. (In Russian)
  24. Samarskij A.A., Galaktionov V.A., Kurdyumov S.P., Mikhajlov A.P. Rezhimy s obostreniem v zadachakh dlya kvazilinejnykh parabolicheskikh uravnenij [Regimes with aggravation in the problems for quasilinear parabolic equations]. Moscow, Nauka Pub., 1987, 312 p. (In Russian)

Issue

Pages

65-77

Submitted

2016-06-20

Published

2016-09-30

How to Cite

Sakharova L.V. Self-similar solutions of the problem of thermal convection, averaged over a thin layer of the evaporating liquid. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 3, pp. 65-77. (In Russian)