Modelling of the functional characteristics of photoelectric converters based on multi-component solid solution AlxGa1-xAs, received from a liquid phase epitaxy

Authors

  • Arustamyan D.A. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Rostov Region, Российская Федерация
  • Chebotarev S.N. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Rostov Region, Российская Федерация
  • Lunin L.S. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Rostov Region, Российская Федерация
  • Lunina M.L. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Российская Федерация
  • Kazakova A.E. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Rostov Region, Российская Федерация
  • Pashchenko A.S. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Российская Федерация

UDC

539.231

Abstract

The most important technological problems of solar energetics are reduction of production costs of photoelectric converters and increase their efficiency. This paper presented a theoretical and experimental study of solar cells based on solid solution AlxGa1-xAs, received from a liquid phase epitaxy. The investigated structure was grown by means of liquid phase epitaxy. The GaAs plate was used as a substrate. The Al0.28Ga0.72As base layer was grown according to the cascade method of refrigeration. Thin emitter layers Al0.1Ga0.9As and a wide bandgap window Al0.9Ga0.1As were produced at lower temperatures (600 °C), from a thin layer of molten aluminum gallium arsenic (0.5 mm thick). The modelling was performed by using AFORS-HET program. During the simulation the following parameters of semiconductor layers were changed: composition of the ternary solution, thickness of the layers, doping level of the layers. Characteristics of the layers for different AlxGa1-xAs compositions were calculated by means of MATLAB 7 application program package. No defects were supposed to be present in the structure, the temperature of the photoelectric converter and the environment was equal to 300 K, multiplicity of radiation was equal to 1, and the conditions of sunlight lighting were equal to AM 1,5. The article shows that an optimum composition of the solid solution for the base layer Al0.28Ga0.72As, is the following: the thickness of layer is 100 microns and the concentration of the acceptor impurity is 1019 cm-3. For the emitter layer Al0.1Ga0.9As optimum layer thickness is 50 nm, optimum concentration of the donor impurity is 1016 cm-3 and the wide bandgap window Al0.9Ga0.1As optimum thickness is 50 nm, optimum concentration of impurity is 2.5$\cdot$1017 cm-3. The conversion efficiency in this case can reach 40.99%.

Keywords:

solar energetics, photoelectric converters, liquid-phase epitaxy, modeling

Acknowledgement

Работа выполнена в рамках реализации Государственного задания на 2016 г. (007-01114-16 ПР), проект (0256-2014-0001), а также при поддержке РФФИ (17-08-01206).

Author Infos

David A. Arustamyan

аспирант кафедры физики и электроники Южно-Российского государственного политехнического университета (НПИ) имени М.И. Платова

e-mail: galeriandavid@gmail.com

Sergey N. Chebotarev

д-р физ.-мат. наук, старший научный сотрудник лаборатории "Кристаллы и структуры для твердотельной электроники" Южного научного центра РАН, заведующий кафедрой физики и электроники Южно-Российского государственного политехнического университета (НПИ) им. М.И. Платова

e-mail: chebotarev.sergei@gmail.com

Leonid S. Lunin

д-р физ.-мат. наук, заведующий отделом нанотехнологий, солнечной энергетики и энергосберегающих технологий Южного научного центра РАН

e-mail: lunin_LS@mail.ru

Marina L. Lunina

канд. физ.-мат. наук, старший научный сотрудник лаборатории "Солнечная энергетика" Южного научного центра РАН

e-mail: lunin_LS@mail.ru

Alena E. Kazakova

аспирант кафедры физики и электроники Южно-Российского государственного политехнического университета (НПИ) имени М.И. Платова<

e-mail: kazakovaalena92@gmail.com

Aleksandr S. Pashchenko

канд. физ.-мат. наук, старший научный сотрудник лаборатории "Кристаллы и структуры для твердотельной электроники" Южного научного центра РАН

e-mail: as.pashchenko@gmail.com

References

  1. Andreev V.M., Khvostikov V.P., Larionov V.R., Rumiantcev V.D., Paleeva E.V., Shvarts M.Z. Vysokoehffektivnye koncentratornye (2500 solnc) AlGaAs/GaAs-solnechnye ehlementy [Highly efficient concentrator (2500 suns) AlGaAs/GaAs solar cells]. Fizika i tekhnika poluprovodnikov [Physics and technics of Semiconductor], 1999, vol. 33, no. 9, pp. 1070-1072. (In Russian)
  2. Bogatov N.M., Matveyakin M.P., Pershin N.V., Rodomanov R.R. Opredelenie vremeni zahvata neravnovesnogo poverhnostnogo zaryada v poluprovodnikovyh strukturah po spadu fotoehds [Determination of the time the capture of nonequilibrium surface charge in semiconductor structures from the decay of the photo-emf]. Ehkologicheskij vestnik nauchnyh centrov Chernomorskogo ehkonomicheskogo sotrudnichestva [Ecological Bulletin of research centers of the Black Sea economic cooperation], 2008, no. 2, pp. 57-61. (In Russian)
  3. Bogatov N.M., Korneev A.I., Matveyakin M.P., Rodomanov R.R. Vliyanie neravnovesnogo zaryada granicy SiO2-Si na nestacionarnost' spektral'noj harakteristiki solnechnyh ehlementov s submikronnym r-n-perekhodom [Influence of nonequilibrium charge SiO2-Si boundaries for the nonstationarity of the spectral characteristics of solar cells with submicron p-n-junction]. Ehkologicheskij vestnik nauchnyh centrov Chernomorskogo ehkonomicheskogo sotrudnichestva [Ecological Bulletin of research centers of the Black Sea economic cooperation], 2006, no. 4, pp. 63-67. (In Russian)
  4. Vlasov A.S., Khvostikov V.P., Karlina L.B., Sorokina S.V., Potapovich N.S., Shvarts M.Z., Timoshina N.H., Lantratov V.M., Mintairov S.A., Kalyuzhnyj N.A., Maruhina E.P., Andreev V.M. Koncentratornye fotoehlektricheskie moduli so spektral'nym rasshchepleniem sveta s solnechnymi ehlementami na osnove struktur AlGaAs/GaAs/GaSb i GaInP/InGaAs(P) [Concentrator photovoltaic modules with a spectral splitting of the light with solar cell structures based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P)]. Zhurnal tekhnicheskoj fiziki [J. of Technical Physics], 2013, vol. 83, no. 7, pp. 106-110. (In Russian)
  5. Lozovskij V.N., Lozovskij S.V., CHebotarev S.N. Issledovanie kraevogo temperaturnogo ehffekta pri zonnoj sublimacionnoj perekristallizacii [A study of the boundary temperature effect in zone sublimation recrystallization]. Izvestiya vysshih uchebnyh zavedenij. Severo-Kavkazskij region. Seriya: Tekhnicheskie nauki [Proc. of the higher educational institutions. North-Caucasian region. Series: Engineering], 2007, no. 5, pp. 52-56. (In Russian)
  6. Lozovskij V.N., Lozovskij S.V., Chebotarev S.N., Irkha V.A. Osazhdenie tugoplavkih metallov na rel'efnye podlozhki metodom zonnoj sublimacionnoj perekristallizacii [The deposition of refractory metals on the relief substrate by zone sublimation recrystallization]. Izvestiya vysshih uchebnyh zavedenij. Severo-Kavkazskij region. Seriya: Tekhnicheskie nauki [Proceedings of the higher educational institutions. North-Caucasian region. Series: Engineering], 2007, no. 4, pp. 68-70. (In Russian)
  7. Lunin L.S., Sysoev I.A., Chebotarev S.N., Pashchenko A.S. Formirovanie kvantovyh tochek InAs na podlozhkah GaAs metodom ionno-luchevogo osazhdeniya [Formation of InAs quantum dots on GaAs substrates by ion beam deposition]. Nauka Yuga Rossii [Science of Southern Russia], 2010, vol. 6, no. 4, pp. 46-49. (In Russian)
  8. Lozovskij V.N., Irkha V.A., Chebotarev S.N. Metodika polucheniya nanometok i ih primenenie dlya pozicionirovaniya v skaniruyushchej zondovoj mikroskopii [A method of production of nano-markers and their use for positioning in scanning probe microscopy]. Zavodskaya laboratoriya. Diagnostika materialov [Factory Laboratory. Diagnosis materials], 2012, vol. 78, no. 9, pp. 33-36. (In Russian)
  9. Gudovskikh A.S., Kaluzhniy N.A., Lantratov V.M., Mintairov S.A., Shvarts M.Z., Andreev V.M. Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows. Thin Solid Films, 2008, vol. 516, iss. 20, pp. 6739-6743.
  10. Chebotarev S.N., Pashchenko A.S., Lunina M.L. Modelirovanie zavisimostej funkcional'nyh harakteristik kremnievyh solnechnyh ehlementov, poluchennyh metodom ionno-luchevogo osazhdeniya, ot tolshchiny i urovnya legirovaniya frontal'nogo sloya [Modeling dependencies functional characteristics of silicon solar cells, grown by ion-beam deposition, on the thickness and doping level of the front layer]. Nauka Yuga Rossii [Sc. of Southern Russia], 2011, vol. 7, no. 4, pp. 25-30. (In Russian)
  11. Chebotarev S.N., Pashchenko A.S., Lunin L.S., Irkha V.A. Modelirovanie kremnievyh tonkoplenochnyh trekhkaskadnyh solnechnyh ehlementov α-Si:H/μC-Si:O/μC-Si:H [Modeling of the thin-film three cascade silicon solar cell α-Si:H/μC-Si:O/μC-Si:H]. Nauka Yuga Rossii [Science of Southern Russia], 2013, vol. 9. no. 4, pp. 18-25. (In Russian)
  12. Arustamyan D.A., Chebotarev S.N., Lunina M.L., Sysoev I.A., Pashchenko A.S., Kazakova A.E., Yatsenko A.N. Zavisimost' harakteristik solnechnyh ehlementov na osnove AlGaAs ot tolshchiny i urovnya legirovaniya bazy [The dependence of the characteristics of the solar cells based on the AlGaAs on the thickness and doping level of the base]. Vestnik Severo-Kavkazskogo federal'nogo universiteta [Bulletin of the North Caucasus Federal University], 2016, no. 4 (55), pp. 7-12. (In Russian)
  13. Musalinov S.B., Bychkov I.V., Anzulevich A.P., Gudovskikh A.S. Modelirovanie dvuh i trekhslojnyh prosvetlyayushchih pokrytij dlya geterostrukturnyh solnechnyh ehlementov [Modeling of two and three-layer antireflection coatings for heterostructure solar cells]. Vestnik Chelyabinskogo gosudarstvennogo universiteta [Bulletin of the Chelyabinsk State University], 2015, no. 7 (362), pp. 60-63. (In Russian)
  14. Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol. 2. World Scientific, London, 1999, pp. 1-36.
  15. Arsentev I.N., Lunin L.S., Kuznecov V.V., Ratushnyj V.I., Shishkov M.V., Ulin B.P., Khristenko A.E., Smolin A.Yu. Poluchenie tverdyh rastvorov gainasp na podlozhkah poristogo fosfida indiya metodom zhidkofaznoj ehpitaksii [Formation of the solid solutions GaInAsP on substrates of porous indium phosphide LPE]. Poverhnost'. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniya [Surface. X-ray, synchrotron and neutron investigations], 2006, no. 1, pp. 14-20. (In Russian)

Issue

Pages

5-12

Submitted

2016-10-21

Published

2016-12-22

How to Cite

Arustamyan D.A., Chebotarev S.N., Lunin L.S., Lunina M.L., Kazakova A.E., Pashchenko A.S. Modelling of the functional characteristics of photoelectric converters based on multi-component solid solution AlxGa1-xAs, received from a liquid phase epitaxy. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 4, pp. 5-12. (In Russian)