Mathematical classification of electroconvection in electro-membrane systems

Authors

  • Kovalenko A.V. Kuban State University, Krasnodar, Российская Федерация

UDC

517.3:544.62

Abstract

The article shows that the cause of electroconvection is vortex nature of electric power, which has a significant value. The mathematical classification of phenomena electroconvection (electroosmosis) is proposed in the article, based on an analysis of the rotor of the electric force. The connection of the rotor of the electric force and the known classification Dukhin-Mishchuk and Rubinstein-Zaltzman is showed. The causes and mechanism of occurrence electroconvection in the flow-through membrane channel is analyzed and it is shown, that the forced flow of solution in the channel desalination has a significant influence on the development of electroconvection. It is shown that although electroconvection in a flow-through membrane channel has features as electroosmosis of the first kind Dukhin-Mishchuk and also unsteady electroosmosis of the second kind Rubinstein-Zaltzman, nevertheless it is a qualitatively new type of electroconvection. It is shown that electroconvection in the presence of forced fluid flow is the qualitatively new type of electroconvection associated with the rotor of the electric force.

Keywords:

electroconvection, electroosmosis, forced fluid flow, equations of Nernst-Planck-Poisson-Navier-Stokes, rotor of the electric force

Acknowledgement

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-08-00128_a "Теоретическое и экспериментальное исследование гравитационной конвекции в мембранных системах с учетом реакции диссоциации/рекомбинации молекул воды".

Author Info

Anna V. Kovalenko

канд. экон. наук, доцент кафедры прикладной математики Кубанского государственного университета

e-mail: savanna-05@mail.ru

References

  1. Urtenov M.K., Uzdenova A.M., Kovalenko A.V., Nikonenko V.V., Pismenskaya N.D., Vasil'eva V.I., Sistat P., Pourcelly G. Basic mathematical model of overlimiting transfer in electrodialysis membrane systems enhanced by electroconvection. J. of Membrane Science, 2013, vol. 447, pp. 190-202. DOI: 10.1016/j.memsci.2013.07.033
  2. Kwak R., Guan G., Peng W.K., Han J. Microscale electrodialysis: concentration profiling and vortex visualization. Desalination, 2012, vol. 308, pp. 138-146.
  3. Nikonenko V., Kovalenko A., Urtenov M., Pismenskaya N., Han J., Sistat P., Pourcelly G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 2014, vol. 342, pp. 85-106. Available at: http://www.sciencedirect.com/science/article/ pii/S001191641400023X (accessed 25.01.2015).
  4. Kovalenko A.V., Urtenov M.Kh., Geryugova A.A. Elektroosmos v mikro- i nanokanalakh. Chast' 1. vyvod ierarkhicheskoy sistemy matematicheskikh modeley s ispol'zovaniem metoda dekompozitsii [The electroosmosis in micro- and nanochannel. Part 1. conclusion a hierarchical system of mathematical models using decomposition method]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Polythematic network electronic scientific journal of the Kuban state agrarian University], 2015, no. 114, pp. 370-387. (In Russian)
  5. Nikonenko V.V., Vasil'eva V.I., Akberova E.M., Uzdenova A.M., Urtenov M.K., Kovalenko A.V., Pismenskaya N.P., Mareev S.A., Pourcelly G. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes. Advances in Colloid and Interface Science, 2016, no. 235, pp. 233-246. DOI: http://dx.doi.org/10.1016/j.cis.2016.06.014
  6. Kovalenko A.V. Vliyanie dissotsiatsii vody na razvitie elektrokonvektsii v membrannykh sistemakh [Influence of water dissociation on electroconvection development in membrane systems]. Kondensirovannye sredy i mezhfaznye granitsy [Condensed substance and phase boundary], 2014, vol. 16, no. 3, pp. 288-293. (In Russian)
  7. De Jong J., Lammertink R.G.H., Wessling M. Membranes and microfluidics: a review. Lab on a Chip-Miniaturisation for Chemistry and Biology, 2006, vol. 6, no. 9, pp. 1125-1139.
  8. Dukhin S.S., Mishchuk H.A., Zholkovskiy E.K. Kontsentratsionnaya polyarizatsiya dvoynogo sloya dispersnoy chastitsy pri bol'shikh chislakh Pekle [The concentration polarization of the double layer of disperse particles at large Peclet numbers]. Kolloidnyy zhurnal [Colloid J.], 1987, vol. 49, no. 5, pp. 865-874. (In Russian)
  9. Dukhin S.S. Electrokinetic phenomena of the 2nd kind and their applications. Adv. Colloid Interface Sci., 1991, vol. 35, pp. 173-196.
  10. Rubinstein I., Zaltzman B. Electroosmotically induced convection at a permselective membrane. Physical Review E, 2000, vol. 62, pp. 2238-2251.
  11. Kovalenko A.V., Zabolotskiy V.I., Nikonenko V.V., Urtenov M.Kh. Matematicheskoe modelirovanie vliyaniya morfologii poverkhnosti geterogennykh ionoobmennykh membran na elektrokonvektsiyu [Mathematical modeling of the influence of the morphology of the heterogeneous ion-exchange membranes on electroconvection]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal KubGAU [Polythematic network electronic scientific journal of the Kuban State Agrarian University], 2014, no. 10. Available at: http://ej.kubagro.ru/2014/10/pdf/46.pdf (accessed 20.01.2015). (In Russian)
  12. Mishchuk N.A. Concentration polarization of interface and non-linear electrokinetic phenomena. Adv. in Colloid and Interface Science, 2010, vol. 160, pp. 16-39.
  13. Mishchuk N.A., Takhistov P.V. Electroosmosis of the second kind. Colloids Surf. A, 1995, vol. 95, no. 2, pp. 119-131.
  14. Rubinstein I., Shtilman L. Voltage against current curves of cation exchange membranes. J. Chem. Soc., 1979, vol. 75, pp. 231-246.
  15. Kovalenko A.V., Urtenov M.Kh., Nikonenko V.V., Loyko V.I. Fizicheskiy smysl nekotorykh kriteriev podobiya protsessa perenosa v kanale obessolivaniya elektrodializnogo apparata s uchetom elektrokonvektsii [The physical meaning of some similarity criteria for the process of transfer in the desalination channel of the electrodialytic apparatus, taking into account electroconvective]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal KubGAU. Elektronnyy zhurnal [Polythematic network electronic scientific journal of the Kuban State Agrarian University. Electron. J.], 2015, no. 1. pp. 846-865. Available at: http://ej.kubagro.ru/2015/01/pdf/51.pdf (accessed 29.09.2015). (In Russian)
  16. Davidson S.M., Wessling M., Mani A. On the Dynamical Regimes of Pattern-Accelerated Electroconvection. Scientific Reports, 2016, no. 6, p. 22505. DOI: 10.1038/srep22505
  17. Kovalenko A.V., Uzdenova A.M., Urtenov M.A.Kh., Nikonenko V.V. Kriterial'nye chisla obrazovaniya nestabil'nykh elektrokonvektivnykh vikhrey v kanale obessolivaniya elektrodializnogo apparata [Criterion number education electroconvective unstable vortices in the desalination channel of the electrodialytic device]. Sorbtsionnye i khromatograficheskie protsessy [Sorption and chromatographic processes], 2014, vol. 14, no. 2, pp. 260-269. (In Russian)
  18. Kovalenko A.V., Uzdenova A.M., Urtenov M.Kh., Nikonenko V.V. Kriterial'nye chisla vozniknoveniya elektrokonvektsii v kamere obessolivaniya elektrodializatora [The criterion of the number of occurrence of electroconvection in the desalination chamber of electrodialyzer]. Kondensirovannye sredy i mezhfaznye granitsy [Condensed matter and interphase boundaries], 2013, vol. 15, no. 4, pp. 404-412. (In Russian)
  19. Kovalenko A.V., Pis'menskiy A.V., Urtenov M.Kh. Teoriya podobiya elektromembrannykh sistem s uchetom vynuzhdennoy, gravitatsionnoy i elektrokonvektsii [Similarity theory electro-membrane systems with consideration of forced, gravitational and electroconvection]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta [Polythematic network electronic scientific journal of the Kuban state agrarian University], 2015, no. 105, pp. 866-887. (In Russian)
  20. Kovalenko A.V. 2D modelirovanie perenosa proizvol'nogo binarnogo elektrolita v elektromembrannykh sistemakh pri vypolnenii usloviya elektroneytral'nosti [2D modeling of the transfer of arbitrary binary electrolyte in electromembrane systems under the condition of electroneutrality]. Fundamental'nye issledovaniya [Fundamental Research], 2015, no. 11, pt. 2, pp. 257-266. (In Russian)
  21. Kovalenko A.V. Chislennyy analiz 2D modeli ZOM perenosa simmetrichnogo binarnogo elektrolita [Numerical analysis of the 2D model ZOOM transfer a symmetric binary electrolyte]. Fundamental'nye issledovaniya [Fundamental Research], 2015, no. 11, pt. 1, pp. 59-65. (In Russian)
  22. Pismenskiy A.V., Urtenov M.K., Kovalenko A.V., Mareev S.V. Electrodialysis desalination process in conditions of mixed convection. Desalination and Water Treatment, 2014, no. 1-3. DOI: 10.1080/19443994.2014.981407
  23. Pis'menskiy A.V., Kovalenko A.V., Urtenov M.Kh. Matematicheskoe modelirovanie protsessov massoperenosa v elektromembrannykh sistemakh v usloviyakh odnovremennogo deystviya vynuzhdennoy, gravitatsionnoy i elektrokonvektsii. Zavisimost' ot nachal'noy kontsentratsii [Mathematical modeling of mass transfer processes in electromembrane systems under the simultaneous action of forced, gravitational and electroconvection. Dependence on the initial concentration]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2014, no. 3, pp. 59-68. (In Russian)
  24. Kovalenko A.V., Evdochenko E.N., Urtenov M.Kh. Raschet i analiz vremennykh kharakteristik elektrokonvektsii v membrannykh sistemakh [Calculation and analysis of the temporal characteristics of electroconvection in membrane systems]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal KubGAU [Polythematic network electronic scientific journal of the Kuban state agrarian University], 2015, no. 109, pp. 958-970. Available at: http://ej.kubagro.ru/2015/05/pdf/66.pdf (accessed 20.11.2016)

Issue

Pages

61-68

Submitted

2016-10-21

Published

2016-12-22

How to Cite

Kovalenko A.V. Mathematical classification of electroconvection in electro-membrane systems. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 4, pp. 61-68. (In Russian)