The algorithm of identification parameters of instant point source of pollution in the Azov Sea on the basis of the method of adjoint equations

Authors

  • Kochergin V.S. Marine Hydrophysical Institute, Russian Academy of Science, Sevastopol, Российская Федерация
  • Kochergin S.V. Marine Hydrophysical Institute, Russian Academy of Science, Sevastopol, Российская Федерация

UDC

51.37

Abstract

The ecological state of the Azov Sea is required the creation of reliable environmental monitoring systems that allow you effectively to assess the situation in the areas subject to technological impact, especially in the areas of the intensive shipping and the construction of communication systems of a different nature. For such evaluations of the examined object it is effective to use highly productive computer technologies and approaches allowing implementing parallelization of calculations. Solving the problems of the pollution spreading of a different nature in the sea is possible on the basis of the methods of the mathematical modeling and the methods for the solving inverse problems, when according to the measurement data due to their assimilation occurs the identification of the certain parameters of the transport model. Recently, variational methods of assimilation and the method of the adjoint equations have been actively developed and used to solve the oceanographic problems. The algorithms of the measurement data adoption are based generally on the minimization of a quadratic functional prediction quality that characterizes the deviation of the model solutions from the measurement data. The transport model of the passive admixture acts as a limit to the variations of the input parameters. In this work, the method of the adjoint equations is applied that allows searching for the location of the source of pollution. The Identification of the source power was produced by using the variational filtering. The numerical experiments were conducted using a hydrodynamic model of the Azov Sea. The resultant flow fields were used in the modeling the transport of the passive admixture. The numerical experiments have shown that the result of the identification significantly depends on the location of measurement points. The most accurate reproduction of the true value of the power source of pollution is obtained in the case, where measurements are carried out in the region of maximum concentration values of the field, which leads to a better conditionality of the solving problem. In general, the carried out numerical experiments have shown the reliable operation of the power of the algorithm identifying the source of pollution, related to the model of passive admixture transport in the Azov Sea.

Keywords:

method of the adjoint equations, identification of input parameters, passive admixture, transport model, Azov Sea, spreading of pollution, assimilation of the data measurements

Acknowledgement

Работа выполнена в рамках Государственного задания (0827-2014-0010) "Комплексные междисциплинарные исследования океанологических процессов определяющих функционирование и эволюцию экосистем Черного и Азовского морей на основе современных методов контроля состояния морской среды и гидротехнологий".

Author Infos

Vladimir S. Kochergin

младший научный сотрудник отдела теории волн Морского гидрофизического института РАН

e-mail: vskocher@gmail.com

Sergey V. Kochergin

старший научный сотрудник отдела морских информационных систем и технологий Морского гидрофизического института РАН

e-mail: ko4ep@mail.ru

References

  1. Ivanov V.A.. Fomin V.V. Matematicheskoye modelirovaniye dinamiche-skikh protsessov v zone more - susha [Mathematical modeling of dynamic processes in the sea-land]. Sevastopol, EKOSI-gidrofizika Pub., 2008, 363 p. (In Russian)
  2. Marchuk G.I., Penenko V.V. Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment. Modelling and Optimization of Complex Systems Proc. of the IFIP-TC7 Working conf., New York, Springer, 1978, pp. 240-252.
  3. Kochergin V.S., Kochergin S.V. Ispol'zovanie variacionnyh princi-pov i resheniya sopryazhennoj zadachi pri identifikacii vhodnyh parametrov modeli perenosa passivnoj primesi [The use of variational principles and the solution of the adjoint problem, identification of input parameters for models of transport of passive tracer]. Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa [Ecological safety of coastal and shelf zones and complex use of shelf resources]. Sevastopol', EKOSI-gidrofizika Pub., 2010, no. 22, pp. 240-244. (In Russian)
  4. Penenko V.V. Metody chislennogo modelirovaniya atmosfernykh protsessov [Methods for numerical modeling of atmospheric processes]. Leningrad, Gidrometeoizdat, 1981, 350 p. (In Russian)
  5. Agoshkov V.I., Parmuzin E.I., SHutyaev V.P. Assimilyaciya dannyh nablyudenij v zadache cirkulyacii Chernogo morya i analiz chuvstvitel'nosti eyo resheniya [Data assimilation of observations in the problem of Black sea circulation and sensitivity analysis of its solution]. Izv. RAN, Fizika atmosfery i okeana [Bulletin of the Russian Academy of Sciences. Physics of atmosphere and ocean], 2013, vol. 49, no. 6, pp. 643-654. (In Russian)
  6. Shutyaev V.P., Le Dime F., Agoshkov V.I., Parmuzin E.I. Chuvstvitel'nost' funkcionalov zadach' variacionnogo usvoeniya dannyh nablyu-deni [The sensitivity of functionals of the challenges of variational data assimilation]. Izv. RAN, Fizika atmosfery i okeana [Bulletin of the Russian Academy of Sciences. Physics of atmosphere and ocean], 2015, vol. 51, no. 3, pp. 392-400. (In Russian)
  7. Ryabcev Yu. N., Shapiro N.B. Opredelenie nachal'nogo polozheniya obnaruzhennyh v otkrytoj chasti morya poverhnostnyh linz ponizhennoj solenosti primesi [Specify a start position detected in the open part of the sea surface lens of low salinity impurities]. In Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa [Ecological safety of coastal and shelf zones and complex use of shelf resources]. Sevastopol', EKOSI-gidrofizika Pub., 2009, no. 18, pp. 141-157. (In Russian)
  8. Kochergin V.S., Kochergin S.V., Identifikaciya moshchnosti istochnika zagryazneniya v Kazantipskom zalive na osnove primeneniya variacionnogo algoritma [Identification of power source of pollution in the Kazantipsky Gulf through the application of a variational algorithm]. Morskoj gidrofizicheskij zhurnal [Marine hydrophysical journal], 2015, no. 2, pp. 79-88. (In Russian)
  9. Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Pub., 1982, 320 p. (In Russian)
  10. Kochergin V.S. Opredelenie polya koncentracii passivnoj primesi po nachal'nym dannym na osnove resheniya sopryazhennyh zadach [Determination of the concentration field of a passive impurity in the initial data based on the solution of conjugate objectives]. In Ekologicheskaya bezopasnost' pribrezhnoj i shel'fovoj zon i kompleksnoe ispol'zovanie resursov shel'fa [Ecological safety of coastal and shelf zones and complex use of shelf resources], MGI NANU, Sevastopol' 2011, no. 25, vol. 2, pp. 270-376. (In Russian)
  11. Strahov V.N. Metod fil'tracii sistem linejnyh algebraicheskih uravnenij - osnova dlya resheniya linejnyh zadach gravimetrii i magnitometrii [Filtering method systems of linear algebraic equations - the basis for solving linear problems of gravimetry and magnetometry]. Dokl. AN SSSR [Rep. of the Academy of Sciences of the USSR], 1991, vol. 320, no. 3, pp. 595-599. (In Russian)
  12. Eremeyev V.N., Kochergin V.P., Kochergin S.V., Sklyar S.N. Matematicheskoye modelirovaniye gidrodinamiki glubokovdnykh basseynov [Mathematical modeling of hydrodynamics of deep-water basins]. Sevastopol, EKOSI-Gidrofizika Pub., 2002, 238 p. (In Russian)

Issue

Pages

69-74

Submitted

2016-12-12

Published

2016-12-22

How to Cite

Kochergin V.S., Kochergin S.V. The algorithm of identification parameters of instant point source of pollution in the Azov Sea on the basis of the method of adjoint equations. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2016, no. 4, pp. 69-74. (In Russian)