Influence of nonideality of the crystal structure and diffusion conditions on the formation of a shallow p-n junction

Authors

  • Shevchenko A.I. Crimean Federal University, Simferopol, Российская Федерация
  • Mazinov A.S. Crimean Federal University, Simferopol, Российская Федерация
  • Arutinov N.E. Crimean Federal University, Simferopol, Российская Федерация

UDC

53.023, 53.043, 53.096, 537.9

Abstract

In this paper the effect of diffusion constants on the distribution profile of the dopant and the depth of the p-n junction has been considered. The base layer was monocrystalline silicon doped with boron, whose concentration was 6$\cdot$1015cm-3. The dopant was phosphorus. The time for the diffusion process was 60 minutes, the temperature was 865 °C. The diffusion coefficient depends exponentially on the temperature and on the activation energy of the diffusing impurity. Three dependencies has been shown under different conditions of the process and the different state of the initial crystal. The pre-exponential factor is the diffusion coefficient at the activation energy equal to 0 eV. For phosphorus the activation energy was determined at 3.66 eV, in turn the diffusion coefficient at zero activation energy has large ambivalence. It can vary by 90%, and a change of 50% gives a deviation of the depth of the p-n junction by 20-30%. The greatest influence on the depth of the barrier (2 times or more) is caused by changes in the activation energy and diffusion temperature. Another parameter - the initial concentration of the atoms of the alloying substance Cs, is determined by its limiting solubility. The change of Cs deflects the position of the p-n junction by 20%. Besides, the time difference in the process also has a negligible effect on the shape of the impurity distribution profile, namely, its change by 10% leads to the deviation of the depth of the p-n junction in 6%.

Keywords:

diffusion, solubility limit, activation energy, diffusion coefficient, concentration distribution profile, p-n junction depth

Author Infos

Aleksey I. Shevchenko

ассистент кафедры радиофизики и электроники Крымского федерального университета им. В.И. Вернадского

e-mail: shevshenkoai@cfuv.ru

Alim S. Mazinov

канд. техн. наук, доцент кафедры радиофизики и электроники Крымского федерального университета им. В.И. Вернадского

e-mail: mas@crimea.edu

Nikita E. Arutinov

студент бакалавриата Физико-технического института Крымского федерального университета им. В.И. Вернадского

e-mail: kintiri1997@gmail.com

References

  1. Sze S.M. (Ed.) VLSI technology. NY, McGraw-Hill, 1983, 676 p.
  2. Bogatov N.M. Raspredeleniye zaryada v rezkom nesimmetrichnom n-p perehode [The charge distribution in sharp asymmetrical equilibrium n-p-junction]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2016, no. 3, pp. 12-17. (In Russian)
  3. Swanson R.M. A vision for crystalline silicon photovoltaics. Progress in photovoltaics, 2006, vol. 14, iss. 5, pp. 443-453.
  4. Deambi S. From sunlight to electricity: A practical handbook on solar photovoltaic applications. New Delhi, TERI, 2015, 172 pp.
  5. Saga T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Materials, 2010, vol. 2, no. 3, pp. 96-102. DOI: 10.1038/asiamat.2010.82
  6. Aliyev R., Olimov M., Muhtarov E., Aliyeva Zh. Protsess formovki plastin polikristallicheskogo kremniya iz poroshkovogo syrya i analiz primesnogo sostava ih poverhnosti [The process of forming of polycrystalline silicon wafers from powdered raw materials and analyzing the impurity composition of their surface]. Fizicheskaya inzheneriya poverhnosti [Physical surface engineering], 2011, vol. 9, no. 1, pp. 55-59. (In Russian)
  7. Mazinov A.S., Shevchenko A.I., Voskresenskiy V.M. [et al.]. Nanostrukturirovannyye poluprovodniki, poluchennyye poroshkovym metodom [Nanostructured semiconductors obtained by the powder method]. Uchonyye zapiski Tavricheskogo natsionalnogo universiteta imeni V.I. Vernadskogo. Seriya "Fiziko-matematicheskiye nauki" [Scientific notes of Taurida National V.I. Vernadsky University. Series "Physics and Mathematics Sciences"]. 2014, vol. 27 (66), no. 2, pp. 107-114. (In Russian)
  8. Fraas L.M. Low-cost solar electric power. Cham, Springer, 2014, 181 pp.
  9. Boxwell M. The solar electricity handbook - 2017 edition: A simple, practical guide to solar energy - designing and installing solar photovoltaic systems. Birmingham, Greenstream Publishing, 2017, 178 pp.
  10. Jordan P.G. Solar Energy Markets: An Analysis of the Global Solar Industry. Amsterdam, Academic Press, 2013, 158 pp.
  11. Mukashev B.N., Betekbaev A.A., Kalygulov D.A. [et al.]. Study of silicon production processes and development of solar-cell fabrication technologies. Semiconductors, 2015, vol. 49, no. 10, pp. 1375-1382.
  12. Mazinov A., Pisarenko L., Shevchenko A. Deviatsyya diffuzionnyh constant i yeyo vliyaniye na profil melko zalegayuschego p-n perehoda [Deviation of diffusion constants and its effect on the profile of a shallow p-n junction]. Tehnicheskaya elektrodinamika: tem. vyp. "Silovaya elektronika i energoeffektivnost" [Technical electrodynamics: thematic issue "Power Electronics and Energy Efficiency"], 2012, vol. 1, pp. 204-208. (In Russian)
  13. Mazinov A., Shevchenko A., Bahov V. Quantum interactions of optical radiation with the defect centres in the tails of the forbidden band of amorphous materials. Optica Applicata, 2014, vol. 44, no. 2, pp. 327-335.
  14. Mazinov A.S., Shevchenko A.I., Terukov E.I. The influence of defects on the energetic spectrum of noncrystalline semiconductors. JNO, 2015, vol. 9, no. 6, pp. 778-782.
  15. Shvets Ye.Ya., Golovko Yu.V. Zavisimost koeffitsienta raspredeleniya primesi pri kristallizatsii kremniya ot stepeni legirovaniya [The dependence of the impurity distribution coefficient for the crystallization of silicon on the degree of doping]. Elektronika i svyaz [Electronics & Communications]. 2008, vol. 1-2 (42-43), pp. 14-16. (In Russian)
  16. Golotyuk V.N., Marinenko A.A., Shmyryova A.N. Multikristallicheskiy kremniy v tehnologii fotoelektricheskih preobrazovateley [Multicrystalline silicon in photovoltaic technology]. Elektronika i svyaz [Electronics & Communications]. 2008, vol. 6 (47), pp. 15-23. (In Russian)
  17. Baranskiy V.I., Klochev V.P., Potykevich I.V. Poluprovodnikovaya elektronika. Svoystva materialov: Spravochnik [Semiconductor Electronics. Properties of materials: Reference book]. Kiev, Naukova dumka Pub., 1975, 704 p. (In Russian)
  18. Alexandrov O.V. A model of high-and low-temperature phosphorus diffusion in silicon by a dual pair mechanism. Semiconductors, 2001, vol. 35, no. 11, pp. 1231-1241.
  19. Palatnik L.S., Sorokin V.K. Materialovedeniye v elektronike [Material Science in Electronics]. Moscow, Energiya, 1978, 280 p. (In Russian)
  20. Sluchinskaya I.A. Osnovy materialovedeniya i tehnologiy poluprovodnikov [Fundamentals of materials science and semiconductor technologies]. Moscow, Nauka Pub., 2002, 378 p. (In Russian)
  21. Alexandrov O.V., Afonin N.N. Specific features of the segregation-related redistribution of phosphorus during thermal oxidation of heavily doped silicon layers. Semiconductors, 2005, vol. 39, no. 6, pp. 615-622.
  22. Matare G. Elektronika defektov v poluprovodnikah [Electronics of defects in semiconductors]. Moscow, Nauka Pub., 1974, 464 p. (In Russian)
  23. Gornushkina Ye.D., Malkovich R.Sh. Diffuziya primesi v poluprovodnike v dvuh sostoyaniyah, razlichayuschihsya koeffitsientami diffuzii i stepenyu ionizatsii primesnyh atomov [Diffusion of an impurity in a semiconductor in two states, differing by the diffusion coefficients and the degree of ionization of impurity atoms]. Fizika i tehnika poluprovodnikov [Physics and techniques of semiconductors], 1995, vol. 29, no. 5, pp. 908-923. (In Russian)
  24. Babichev A.P., Babushkina N.A., Bratkovskiy A.M. [et al.]. Fizicheskiye velichiny. Spravochnik [Physical quantities. Reference book]. Moscow, Energoatomizdat Pub., 1991, 1232 p. (In Russian)
  25. Fahrenbruch A., Bube R. Fundamentals of solar cells. Photovoltaic solar energy conversion. 1st ed., NY, Academic Press, 1983. 580 p.
  26. Berezin A.S., Mochalkina O.P. Tehnologiya i konstruirovaniye integralnyh mikroshem [Technology and design of integrated microcircuits], Moscow, Radio i svyaz Pub., 1992, 320 p. (In Russian)
  27. Mazinov A.S., Shevchenko A.I., Bykov M.A. Asimmetrichnost plotnosti raspredeleniya obyomnogo neskompensirovannogo zaryada na granitse metallurgicheskogo p-n perehoda [The asymmetry of the distribution density volume uncompensated charge at the metallurgical p-n junction]. Zhurnal nano- i elektronnoy fiziki [Journal of nano- and electronic physics], 2012, vol. 4, no. 3, pp. 03026-1-03026-4. (In Russian)
  28. Sze S.M. Physics of the semiconductor devices, NY, John Wiley & Sons, 1981, 880 p.
  29. Gotra Z.Yu. Tehnologiya mikroelektronnyh ustroystv: Spravochnik [Technology of microelectronic devices: Reference Book]. Moscow, Radio i svyaz, 1991, 528 p. (In Russian)

Issue

Pages

74-82

Submitted

2017-03-17

Published

2017-03-30

How to Cite

Shevchenko A.I., Mazinov A.S., Arutinov N.E. Influence of nonideality of the crystal structure and diffusion conditions on the formation of a shallow p-n junction. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 1, pp. 74-82. (In Russian)