On calculation of the effective thermal conductivity of textured tribocomposites

Authors

  • Lavrov I.V. National Research University of Electronic Technology, Moscow, Российская Федерация
  • Bardushkin V.V. National Research University of Electronic Technology, Moscow, Российская Федерация
  • Sychev A.P. Southern Scientific Center, Russian Academy of Science, Rostov-on-Don, Российская Федерация
  • Yakovlev V.B. National Research University of Electronic Technology, Moscow, Российская Федерация
  • Kirillov D.A. National Research University of Electronic Technology, Moscow, Российская Федерация

UDC

536.2

Abstract

The common operator expression for a tensor of effective thermal conductivity ${\rm {\bf k}}^{\ast }$ of the inhomogeneous textured material is derived. Assuming the inhomogeneous material to consist of ellipsoidal grains let us approximate the integral operator by the constant tensor ${\rm {\bf g}}$ related with the concrete inclusion and thus obtain the generalized singular approximation for ${\rm {\bf k}}^{\ast }$ on the base of the common operator expression. It is shown that in case of coincidence of axes of ellipsoidal inclusion with principal axes of a tensor of thermal conductivity of the comparison medium the components of a tensor ${\rm {\bf g}}$ may be expressed through components of a tensor of the generalized geometrical factors of the ellipsoid placed in the anisotropic external medium. The received generalized singular approximation is applied to calculation of a tensor ${\rm {\bf k}}^{\ast }$ of the multicomponent textured matrix composite with uniformly oriented inclusions. For a special case of the generalized singular approximation - a self-consistent approximation - the system of equations for finding of the main components of a tensor ${\rm {\bf k}}^{\ast }$ of this composite is derived. On the basis of the received system of equations numerical simulation of thermal conducting characteristics of the textured tribocomposite consisting of three components is made: epoxy ED-20 system as a matrix, polytetrafluoroethylene inclusions of spherical shape as an antifriction component and the prolate spheroidal glass inclusions as the reinforcing component. Dependences of the principal components of effective thermal conductivity tensor of this tribocomposite on volume fractions of reinforcing inclusions are given. It is shown what this tribocomposite has anisotropy of thermal-conducting properties, despite isotropic material characteristics of each components. It is also shown that values of the principal components of effective thermal conductivity tensor are less than volume average value of a thermal conductivity.

Keywords:

tensor of effective thermal conductivity, texture, composite, tribocomposite, multicomponent, generalized singular approximation, matrix, ellipsoidal inclusion, self-consistent approximation

Acknowledgement

Работа выполнена при финансовой поддержке грантов РФФИ (16-08-00262-a, 17-08-01374-а).

Author Infos

Igor V. Lavrov

канд. физ.-мат. наук, доцент кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

e-mail: iglavr@mail.ru

Vladimir V. Bardushkin

д-р физ.-мат. наук, профессор кафедр "Высшая математика №2" и "Системная среда качества" Национального исследовательского университета "МИЭТ"

e-mail: bardushkin@mail.ru

Aleksandr P. Sychev

канд. физ.-мат. наук, заведующий лабораторией транспорта и новых композиционных материалов Южного научного центра РАН

e-mail: alekc_sap@mail.ru

Viktor B. Yakovlev

д-р физ.-мат. наук, профессор РАН, профессор кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

e-mail: yakovlev@miee.ru

Dmitriy A. Kirillov

аспирант кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

e-mail: dmitry.kirilloff@gmail.com

References

  1. Kolesnikov V.I.Teplofizicheskie protsessy v metallopolimernykh tribosistemakh [Thermophysical processes in metal-polymeric tribosystems]. Moscow, Nauka Publ., 2003, 279 p. (In Russian)
  2. Garnett J.C.M. Colours in metal glasses and in metallic films. Phil. Trans. R. Soc., London, 1904, vol. 203, pp. 385-420.
  3. Bruggeman D.A.G. Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen. Ann. Phys., Lpz., 1935, b. 24, pp. 636-679. (In German)
  4. Zarubin V.S., Kuvyrkin G.N., Savel'eva I.Yu. Effektivnaya teploprovodnost' kompozita v sluchae otkloneniy formy vklyucheniy ot sharovoy [Effective thermal conductivity of a composite in case of inclusions shape deviations from spherical ones]. Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and numerical methods], 2014, no. 4, pp. 3-17. (In Russian)
  5. Bragg W.L., Pippard A.B. The Form Birefringence of Macromolecules. Acta Cryst., 1953, vol. 6, no. 11-12, pp. 865-867.
  6. Progelhof R.C., Throne J.L., Ruetsch R.R. Methods for Predicting the Thermal Conductivity of Composite Systems: A Review. Polymer Engineering and Science, 1976, vol. 76, no. 9, pp. 615-625.
  7. Pietrak K., Wisniewski T.S. A review of models for effective thermal conductivity of composite materials. J. of Power Technologies, 2015, vol. 95, no. 1, pp. 14-24.
  8. Fokin A.G. Dielektricheskaya pronitsaemost' smesey [Dielectric Permittivity of Mixtures]. Zhurnal tekhnicheskoy fiziki [Technical Physics. The Russian Journal of Applied Physics], 1971, vol. 41, no. 6, pp. 1073-1079. (In Russian)
  9. Shermergor T.D. Teoriya uprugosti mikroneodnorodnykh sred [Micromechanics of inhomogeneous medium]. Moscow, Nauka Publ., 1977, 399 p. (In Russian)
  10. Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. Association of evaluation methods of the effective permittivity of heterogeneous media on the basis of a generalized singular approximation. Doklady Physics, 2013, vol. 58, no. 9, pp. 379-383. doi: 10.1134/S1028335813090012
  11. Kolesnikov V.I., Yakovlev V.B., Bardushkin V.V., Lavrov I.V., Sychev A.P., Yakovleva E.N. A Method of Analysis of Distributions of Local Electric Fields in Composites. Doklady Physics, 2016, vol. 61, no. 3, pp. 124-128. doi: 10.1134/S1028335816030101
  12. Gel'fand I.M., Shilov G.E. Obobshchennye funktsii i deystviya nad nimi [Generalized functions. Properties and Operations]. Moscow, GIFML Publ., 1958, 440 p. (In Russian)
  13. Lavrov I.V. Proizvol'no orientirovannyy dielektricheskiy ellipsoid v anizotropnoy srede: metod neortogonal'nogo preobrazovaniya prostranstva [An arbitrarily oriented dielectric ellipsoid in an anisotropic medium: the non-orthogonal space transformation method]. Fundamental'nye problemy radioelektronnogo priborostroeniya [Fundamental problems of radioengineering and device construction], 2013, vol. 13, no. 1, pp. 44-47. (In Russian)
  14. Grigor'ev I.S., Meilikhov E.Z. (eds.) Fizicheskie velichiny: Spravochnik [Physical Quantities: A Handbook]. Moscow, Energoatomizdat Publ., 1991, 1232 p. (In Russian)
  15. Wiener O. Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abh.-Sachs. Geselsch., 1912, b. 32, ss. 509-604. (In German)

Issue

Pages

48-56

Submitted

2017-04-12

Published

2017-06-30

How to Cite

Lavrov I.V., Bardushkin V.V., Sychev A.P., Yakovlev V.B., Kirillov D.A. On calculation of the effective thermal conductivity of textured tribocomposites. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 2, pp. 48-56. (In Russian)