The study of barium-gadolinium, barium-yttrium and barium-bismuth double molybdates as a potential active media for microchip Raman lasers

Authors

  • Lebedev A.V. Kuban State University, Krasnodar, Russian Federation
  • Avanesov S.A. Kuban State University, Krasnodar, Russian Federation
  • Hammoud A. Kuban State University, Krasnodar, Russian Federation

UDC

538.9

DOI:

https://doi.org/10.31429/vestnik-16-3-63-67

Abstract

In this work, BaR2(MoO4)4 compounds (where R = Gd, Y, Bi) have been synthesized, and a comparative study of the Raman spectra of these compounds has been carried out for the first time, to the best of our knowledge. It has been shown that these compounds, potentially, are the promising active media for conversion of laser radiation on the stimulated Raman scattering effect, in particular, for a microchip self-Raman laser. The peak and integral cross sections of the most intense bands in the Raman spectrum (around 850 cm-1 and 950 cm-1) of the compounds under consideration are comparable in magnitude with the cross sections of barium tungstate – the well-known highly efficient stimulated Raman scattering crystal. It has been found that the peak intensities of the vibration around 850 cm-1 decrease with decreasing radius and mass of the R3+ cation. The optical damage threshold of BaBi2(MoO4)4 and BaGd2(MoO4)4 crystals on cleaved (non-polished) surface was estimated at about 500 MW/cm2.

Keywords:

Raman, optical materials and properties, crystal structure

Acknowledgement

Работа подготовлена при финансовой поддержжке РФФИ и Администрации Краснодарского края (проект 19-42-230002).

Author Infos

Andrei V. Lebedev

канд. физ.-мат. наук, инженер кафедры физики и информационных систем Кубанского государственного университета

e-mail: avlbdv@gmail.com

Samvel A. Avanesov

инженер кафедры физики и информационных систем Кубанского государственного университета

e-mail: samuil@rambler.ru

Alaa Hammoud

аспирант кафедры физики и информационных систем Кубанского государственного университета

e-mail: allahammsss@gmail.com

References

  1. Basiev, T.T., Osiko, V.V., Prokhorov, A.M., Dianov, E.M. Crystalline and fiber Raman lasers. in: Sorokina, I.T., Vodopyanov, K.L. (Eds.). Solid State Mid Infrared Laser Sources. Springer, Berlin, 2003, pp. 359–408.
  2. Basiev, T., Doroshenko, M., Ivleva, L., Voronina, I., Konjushkin, V., Osiko, V., Vasilyev, S. Demonstration of high self-Raman laser performance of a diode pumped SrMoO4:Nd3+ crystal. Opt. Lett., 2009, vol. 34, pp. 1102–1104. DOI: 10.1364/OL.34.001102.
  3. Basiev, T.T., Zverev, P.G., Karasik, A.Ya., Osiko, V.V., Sobol', A.A., Chunaev, D.S. Picosecond stimulated Raman scattering in crystals. J. Exp. Theor. Phys., 2004, vol. 99, pp. 934–941. DOI: 10.1134/1.1842874.
  4. Šulc, J., Jelínková, H., Basiev, T.T., Doroschenko, M.E., Ivleva, L.I., Osiko, V.V., Zverev, P.G. Nd:SrWO4 and Nd:BaWO4 Raman lasers. Opt. Mater., 2007, vol. 30, pp. 195-197. DOI: 10.1016/j.optmat.2006.10.019.
  5. Zayhowski, J.J. Microchip lasers. in Denker, B., Shklovsky, E. (eds.) Handbook of Solid-State Lasers: Materials, Systems and Applications. Woodhead Publishing, 2013, pp. 359-402.
  6. Demidovich, A.A., Apanasevich, P.A., Batay, L.E., Grabtchikov, A.S., Kuzmin, A.N., Lisinetskii, V.A., Orlovich, V.A., Kuzmin, O.V., Hait, V.L., Kiefer, W., Danailov, M.B. Sub-nanosecond microchip laser with intracavity Raman conversion. Applied Physics B, 2003, vol. 76, pp. 509-514. DOI: 10.1007/s00340-003-1149-z.
  7. Demidovich, A.A., Voitikov, S.V., Batay, L.E., Grabtchikov, A.S., Danailov, M.B., Lisinetskii, V.A., Kuzmin, A.N., Orlovich, V.A. Modeling and experimental investigation of short pulse Raman microchip laser. Optics Communications, 2006, vol. 263, pp. 52-59. DOI: 10.1016/j.optcom.2006.01.007.
  8. Muktha, B., Madras, G., Guru Row, T.N. A novel scheelite-like structure of BaBi2Mo4O16: Photocatalysis and investigation of the solid solution, BaBi2Mo4-xWxO16 (0.25≤x≤1). J. Photochem. Photobiol., A: Chemistry, 2007, vol. 187, pp. 177–185. DOI: 10.1016/j.jphotochem.2006.10.016.
  9. Fedorov, N.F., Ipatov, V.V., Rozhnovskaya, G.I. Phase equilibria in the BaMoO4-Ln2(MoO4)3 systems (Ln = Nd or Gd). Russ. J. Inorg. Chem., 1982, vol. 27, pp. 1019–1022.
  10. Vakulyuk, V.V., Evdokimov, A.A., Khomchenko, G.P. The BaMoO4-Ln2(MoO4)3 systems (Ln = Nd, Sm, Yb). Russ. J. Inorg. Chem., 1982, vol. 27, pp. 1016–1019.
  11. Zhao, D., Lin, Z., Zhang, L., Wang G. Growth and spectroscopic characterizations of Nd3+-doped BaGd2(MoO4)4 crystal. J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 1018-1021. DOI: 10.1088/0022-3727/40/4/015.
  12. Zhu, H.M., Chen, Y.J., Lin, Y.F., Gong, X.H., Luo, Z.D., Huang, Y.D. Polarized spectral properties and laser demonstration of Nd3+:BaGd2(MoO4)4 cleavage crystal. J. Opt. Soc. Am. B, 2007, vol. 24, pp. 2659–2665. DOI: 10.1364/JOSAB.24.002659.
  13. Zhu, H.M., Chen, Y.J., Lin, Y.F., Gong, X.H., Luo, Z.D., Huang, Y.D. Efficient 1.06 μm laser operation in an unprocessed Nd3+:BaGd2(MoO4)4 cleavage microchip. Appl. Phys. B, 2008, vol. 93, pp. 429–432. DOI: 10.1007/s00340-008-3196-y
  14. Lebedev, A.V., Avanesov, S.A. Barium–Bismuth molybdate – a novel promising material for stimulated Raman scattering. Mater. Lett., 2015, vol. 161, pp. 661-664. DOI: 10.1016/j.matlet.2015.09.054.
  15. Basiev, T.T, Sobol, A.A, Voronko, Yu.K, Zverev, P.G. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Opt. Mater., 2000, vol. 15, pp. 205-216. DOI: 10.1016/S0925-3467(00)00037-9

Issue

Section

Physics

Pages

63-67

Submitted

2019-09-02

Published

2019-09-30

How to Cite

Lebedev A.V., Avanesov S.A., Hammoud A. The study of barium-gadolinium, barium-yttrium and barium-bismuth double molybdates as a potential active media for microchip Raman lasers. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2019, vol. 16, no. 3, pp. 63-67. DOI: https://doi.org/10.31429/vestnik-16-3-63-67