Closedness of the Biharmonic System of Basic Potentials

Authors

  • Markovsky A.N. Kuban State University, Krasnodar, Российская Федерация

UDC

517.518.32+517.956.224+519.635.1

DOI:

https://doi.org/10.31429/vestnik-17-1-2-20-26

Abstract

The shift systems of the fundamental solution of biharmonic equation are considered. The shift sequence belongs to the complement of the bounded single-bond domain $Q$, so that all system functions satisfy the biharmonic equation in $Q$. The space of biharmonic functions $G_{2}(Q)$ is introduced as a closure in the $L_{2}(Q)$ norm of the linear shell of all kinds of shifts of the fundamental solution of biharmonic equation. The following problem is considered: what conditions the countable sequence of shifts must have so that the linear shell closure matches the entire $G _ {2} (Q) $ space, or, in other words, when is the considered system complete in $G _ {2} (Q)$? The problem for the harmonic case was considered by V.G. Lezhnev, he introduced a sufficient basis condition and proved the completeness and linear independence of shift systems of the fundamental solution of Laplace's equation.The work generalizes the basis condition to the biharmonic case and proves the closedness and linear independence of biharmonic system. The basis condition is related to the singularity condition of biharmonic functions. The proof relies on the property of continuity of potentials with a biharmonic nucleus and on the Rikier's boundary value problem solution.

Keywords:

harmonic functions, biharmonic functions, complete potential systems, method of basic potentials (MBP), method of fundamental solutions (MFS), projection methods

Author Info

Aleksey N. Markovsky

канд. физ.–мат. наук, доцент кафедры математических и компьютерных методов Кубанского государственного университета

e-mail: mrkvsk@yandex.ru

References

  1. Kupradze, V.D., Aleksidze M.A. The method of functional equations for the approximate solution of certain boundary value problems. U.S.S.R. Comput. Math. Math. Phys., 1964, vol. 4. iss. 4, pp. 82–126.
  2. Kupradze, V.D. On the approximate solution of problems in mathematical physics. Russian Math. Surveys, 1967, vol. 22, iss. 2, pp. 58–108.
  3. Aleksidze, M.A. Reshenie granichnykh zadach metodom razlozheniya po neortogonal'nym funktsiyam [The solution of boundary problems by the method of expansion in non-orthogonal functions]. Nauka, Moscow, 1978. (In Russian)
  4. Lezhnev, A.V., Lezhnev, V.G. Metod bazisnykh potentsialov v zadachakh matematicheskoy fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. KubGU, Krasnodar, 2009. (In Russian)
  5. Fairweather, G., Johnston, R.L. The method of fundamental solutions for problems in potential theory. In: Baker C.T.H., Miller G.F. (eds.) Treatment of Integral Equations by Numerical Methods. Academic Press, New York, 1982.
  6. Bogomolny, A. Fundamental solutions method for elliptic boundary value problems. J. Num. Anal., 1985, vol. 22, iss. 4, pp. 644–669.
  7. Aleksidze, M. A. Fundamental'nye funktsii v priblizhennykh resheniyakh granichnykh zadach [Fundamental functions in approximate solutions of boundary value problems]. Nauka, Moscow, 1991. (In Russian)
  8. Lezhnev, V.G. Approksimatsiya obratnykh zadach n'yutonova potentsiala [Approximation of the inverse problems of the Newtonian potential]. In: Chislenne metody analiza [Numerical analysis methods]. MGU, Moscow, 1997, pp. 52–67. (In Russian)
  9. Lezhnev V.G. Stream function of the two-dimensional flow problem, Robin potential, and the exterior Dirichlet problem. Doklady Physics, 2004, vol. 49, no. 2, pp. 116–118.
  10. Lezhnev, V.G. Vydelenie garmonicheskoy sostavlyayushchey [Isolation of the harmonic component]. In: Chislennyy analiz: teoriya, prilozheniya, programmy: Sbornik nauchnykh trudov [Numerical analysis: theory, applications, programs: Collection of scientific papers]. MGU, Moscow, 1999, pp. 90–95. (In Russian)
  11. Karageorghis, A., Fairweather, G. The Method of Fundamental Solutions for the Numerical Solution of the Biharmonic Equation. J. of Computational Physics, 1987, vol. 69, pp. 434–459.
  12. Alves, C.J.S., Chen, C.S. A new method of fundamental solutions applied to nonhomogeneous elliptic problems. Adv. in Computational Math., 2005, vol. 23, pp. 125–142.
  13. Dou Fangfang, Li Zi-Cai, Chen, C.S., Zhaolu, Tian. Analysis on the MFS for biharmonic equations. Appl. Math. Comput., 2018, vol. 339, pp. 346–366.
  14. Sakakibara, K. Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition. Applications of Mathematics, 2017, vol. 62, iss. 4, pp. 297–317.
  15. Bialecki, B., Karageorghis, A. A Legendre Spectral Galerkin Method For The Biharmonic Dirichlet Problem. SIAM J. Sci. Comput., 2000, vol. 22, iss. 5, pp. 1549–1569.
  16. Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H. On the equivalence of the Trefftz method and MFS for Laplace and biharmonic equations. Computers and Mathematics with Applications, 2007, vol. 53, iss. 6, pp. 851–879.
  17. Shapeev, V.P., Belyaev, V.A. Reshenie kraevykh zadach dlya uravneniy s chastnymi proizvodnymi v treugol'nykh oblastyakh [Solution of boundary value problems for partial differential equations in triangular domains]. Vychislitel'nye metody i programirovanie [Computational methods and programming], 2018, vol. 19, pp. 96–111. (In Russian)
  18. Lezhnev, V.G., Markovskiy, A.N. Proektsionnyy algoritm kraevoy zadachi neodnorodnogo uravneniya Lame [The projection algorithm of the boundary value problem of the inhomogeneous Lame equation]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya Fiziko-matematicheskie nauki [Bulletin of the Samara State Technical University. Series Physics and Mathematics], 2011, vol. 1, no. 22, pp. 236–240. (In Russian)
  19. Lezhnev, V.G., Markovskiy, A.N. Proektsionnye algoritmy vikhrevykh 2D techeniy v slozhnykh oblastyakh [Projection Algorithms of 2D Vortex Flows in Complex Areas]. Tavricheskiy Vestnik informatiki i matematiki [Tavrichesky Vestnik Informatiki i Matematiki], 2015, vol. 1, no. 26, pp. 42–49. (In Russian)
  20. Lezhnev, V.G., Markovskiy, A.N. Metod bazisnykh potentsialov dlya neodnorodnogo bigarmonicheskogo uravneniya [The method of basic potentials for an inhomogeneous biharmonic equation]. Vestnik Samarskogo gosuniversiteta. Estestvenno nauchnaya seriya [Bulletin of Samara State University. Naturally Scientific Series], 2008, vol. 8, no. 1, pp. 127–139. (In Russian)
  21. Vladimirov, V.S. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Nauka, Moscow, 1988. (In Russian)
  22. Sobolev, S. L. Vvedenie v teoriyu kubaturnykh formul [Introduction to the theory of cubature formulas]. Nauka, Moscow, 1974. (In Russian)
  23. Bitsadze, A.V. O poligarmonicheskikh funktsiyakh [On polyharmonic functions]. Doklady AN SSSR [Reports of the USSR Academy of Sciences], 1987, vol. 294, no. 3, pp. 521–525. (In Russian)
  24. Mikhaylov, V.P. Differentsial'nye uravneniya v chastnykh proizvodnykh [Partial differential equations]. Nauka, Moscow, 1983. (In Russian)

Issue

Section

Mathematics

Pages

20-26

Submitted

2019-12-08

Published

2020-03-31

How to Cite

Markovsky A.N. Closedness of the Biharmonic System of Basic Potentials. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 1, pp. 20-26. DOI: https://doi.org/10.31429/vestnik-17-1-2-20-26 (In Russian)