Features of the Plane Wave Propagating Through a Layered Phonon Crystal with Multiple Periodic Arrays of Cracks

Authors

  • Golub M.V. Kuban State University, Krasnodar, Российская Федерация
  • Fomenko S.I. Kuban State University, Krasnodar, Российская Федерация
  • Doroshenko O.V. Kuban State University, Krasnodar, Российская Федерация

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-17-1-2-31-41

Abstract

Propagation of elastic waves through a periodically arranged elastic structure composed of two-layered unit-cells (so-called phononic crystal) is considered in the present paper. Periodic arrays of interface strip-like cracks are introduced to influence on pass-bands and band-gaps. Features of plane wave propagation through a layered phononic crystal with multiple periodic arrays of cracks are studied employing the boundary integral equation method. The effect of the number of arrays of cracks on the band-gaps occurrence as well as the distribution of energy flow density in the phononic crystal are analyzed for various numbers of arrays of cracks and different frequencies. The effects of the number of arrays of cracks on the peculiarities of transmission/reflection of wave energy in the periodic structure are illustrated using streamlines, which are constructed via the Umov-Poynting vector. The introduction of periodic arrays of cracks into the layered phononic crystal allows to open it for wave propagation in certain frequency ranges. The latter may have a practical application in the development of acoustic filters.

Keywords:

elastic waves, phononic crystal, crack, periodic array, band gap, resonance, Umov-Poynting vector

Acknowledgement

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 18-501-12069) и Немецкого научно-исследовательского общества DFG (проект ZH 15/29-1).

Author Infos

Mihail V. Golub

д-р физ.-мат. наук, ведущий научный сотрудник Института математики, механики и информатики Кубанского государственного университета

e-mail: m_golub@inbox.ru

Sergey I. Fomenko

канд. физ.-мат. наук, доцент кафедры прикладной математики Кубанского государственного университета

e-mail: sfom@yandex.ru

Olga V. Doroshenko

канд. физ.-мат. наук, доцент кафедры интеллектуальных информационных систем Кубанского государственного университета

e-mail: oldorosh@mail.ru

References

  1. Macleod, H.A. Thin-Film Optical Filters. CRC Press, USA, 2010.
  2. Russell, P. Photonic crystal fibers Science, 2003, vol. 299(6), pp. 358–362.
  3. Srivastava, A. Metamaterial properties of periodic laminates. J. of the Mechanics and Physics of Solids, 2016, vol. 96, pp. 252–263.
  4. Hwangh, H.Y. Effect of the crack length on the piezoelectric damage monitoring of glass fiber epoxy composite DCB specimens. Composites Science and Technology, 2012, vol. 72, iss. 8, pp. 902–907.
  5. Kutsenko, A.A., Shuvalov, A.L. Shear surface waves in phononic crystals. The J. of the Acoustical Society of America, 2013, vol. 133, iss. 2, pp. 653–660.
  6. Pang, Y. Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media. European J. of Mechanics - A/Solids, 2011, vol. 30, iss. 5, pp. 731–740.
  7. Ponge, M.F., Croenne, C., Vasseur, J.O. Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals. J. of the Acoustical Society of America, 2016, vol. 139, iss. 6, pp. 3288–3295.
  8. Yan, D.J., Chen, A.L., Wang, Y.S. Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites. European Journal of Mechanics - A/Solids, 2017, vol. 66, pp. 158–167.
  9. Babeshko, V.A., Glushkov, E.V., Zinchenko, Zh.F. Dinamika neodnorodnykh lineyno-uprugikh sred [Dynamics of inhomogeneous linear elastic media]. Nauka, Moscow, 1989. (In Russian)
  10. Glushkov, E.V., Glushkova, N.V. Integral'nye preobrazovaniya i volnovye processy [Integral transformations and wave processes]. Kuban State University, Krasnodar, 2017. (In Russian)
  11. Fomenko, S.I., Golub, M.V., Bui, T.Q. In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals. Int. J. of Solids and Structures, 2014, vol. 51, iss. 13. pp. 2491–2503.
  12. Fomenko, S.I., Golub, M.V., Aleksandrov, A.A. Chislenno ustojchivyj metod opredeleniya volnovyh polej i zapreshchennyh zon v sloistyh fononnyh kristallah [A numerically stable method for determining wave fields and band gaps in layered phonon crystals]. Vychislitel'naya mekhanika sploshnyh sred [Computational mechanics of continuous media], 2017, no. 3, pp. 235–244. (In Russian)
  13. Glushkov, E.V., Glushkova, N.V., Golub, M.V., Zhang, Ch. Rezonansnoe blokirovanie begushchih voln sistemoj treshchin v uprugom sloe [Resonant blocking of traveling waves by a system of cracks in the elastic layer]. Akusticheskij zhurnal [Acoustic J.], 2009, no. 1, pp. 11–20. (In Russian)
  14. Glushkov, E.V., Glushkova, N.V. On the efficient implementation of the integral equation method in elastodynamics. J. of Computational Acoustics, 2001, vol. 9(3), pp. 889–898.
  15. Sveshnikov, A.G. Printsip predel'nogo pogloshcheniya dlya volnovoda [The limit absorption principle for a waveguide]. Doklady Akademii Nauk USSR [Rep. of the USSR Academy of Sciences], 1951, vol. 80, no. 3, pp. 345–347. (In Russian)
  16. Glushkov, E.V., Glushkova, N.V., Eremin, A.A. Forced wave propagation and energy distribution in anisotropic laminate composites. J. of Acoustical Society of America, 2011, vol. 129, no. 5, pp. 2923–2934.
  17. Golub, M.V., Zhang, Ch. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks. J. of Acoustical Society of America, 2015, vol. 137, no. 1, pp. 238–252.
  18. Rabinovich M.I., Trubetskov D.I. Vvedenie v teoriyu kolebanij i voln [Introduction to the theory of oscillations and waves]. NIC ``Reguljarnaya i haoticheskaya dinamika'', Moscow, Izhevsk, 2000. (In Russian)
  19. Umov N.A. Ableitung der bewegungsgleichunger der energie continuirlichen körpern Zeitschrift für Mathematik und Physik, 1874, vol. 19, iss. 5, pp. 1–22.
  20. Babeshko V.A., Glushkov E.V., Glushkova N.V. Energy vortices and backward fluxes in elastic waveguides. Wave Motion, 1992, vol. 16, pp. 183–192.
  21. Lezhnev V.G., Danilov E.A. Zadachi ploskoj gidrodinamiki [Problems of flat hydrodynamics]. Kuban State University, Krasnodar, 2000. (In Russian)
  22. Lezhnev A.V., Lezhnev V.G. Metod bazisnyh potencialov v zadachah matematicheskoj fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)
  23. Lezhnev V.G., Markovskij A.N. Proekcionnye algoritmy vihrevyh {2D techenij v slozhnyh oblastyah [Projection Algorithms of Vortex {2D Flows in Complex Areas]. Tavricheskij vestnik informatiki i matematiki [Tauride J. of Computer Science and Mathematics], 2015, no. 1, pp. 42–49. (In Russian)

Issue

Section

Mechanics

Pages

31-41

Submitted

2019-10-28

Published

2020-03-31

How to Cite

Golub M.V., Fomenko S.I., Doroshenko O.V. Features of the Plane Wave Propagating Through a Layered Phonon Crystal with Multiple Periodic Arrays of Cracks. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 1, pp. 31-41. DOI: https://doi.org/10.31429/vestnik-17-1-2-31-41 (In Russian)