Algorithm for Moving Point Vortices in a Bounded Area

Authors

  • Chernaya A.S. Kuban State University, Krasnodar, Российская Федерация
  • Hanazaryan A.D. Kuban State University, Krasnodar, Российская Федерация
  • Markovsky A.N. Kuban State University, Krasnodar, Российская Федерация

UDC

519.642.3+532.527

DOI:

https://doi.org/10.31429/vestnik-17-1-2-61-68

Abstract

The problem of calculating the paths of motion of a set of point vortices in an ideal incompressible liquid in a limited area is considered. The area is supposed to be piecewise smooth. The stream function at any given time is presented as a sum: the stream functions of point vortices and the potential of a simple layer, the density of which - the density of vortexes on the border - is required to determine. Regardless of time, the stream function harmoniously extends into the exterior of the area and is identically equal to a constant at the boundary, and, therefore, is a Roben potential. Briefly, the paper describes an algorithm for calculating the Roben potential. The unknown density of vortices is sought in the form of a linear combination of a complete system of potentials, and the coefficients are determined by the values of the Roben potential, as a solution to the inverse problem; determination of the coefficients reduces to solving a system of linear equations with a Gram matrix for a linearly independent system of functions. By the function of stream by tangents determine the trajectories of movements of vortices. The results of computational experiments of the motion of several point vortices in a square are presented. A computer analysis of the movement was carried out: two, four and eight point vortices, calculated the trajectories of their movement and found stationary and periodic, stable and unstable configurations.

Keywords:

point vortices, stream function, density of vortices, potential of the Roben, full system potential

Author Infos

Anastasiya S. Chernaya

студент факультета математики и компьютерных наук Кубанского государственного университета

e-mail: chernaya.nastya18@gmail.com

Artur D. Hanazaryan

студент факультета математики и компьютерных наук Кубанского государственного университета

e-mail: artur97.10@mail.ru

Aleksey N. Markovsky

канд. физ.–мат. наук, доцент кафедры математических и компьютерных методов Кубанского государственного университета

e-mail: mrkvsk@yandex.ru

References

  1. Kochin, N.E., Kibel', I.A., Roze, N.V. Teoreticheskaya gidromekhanika, Ch. 1 [Theoretical Hydromechanics, Part 1]. Fizmatgiz, Moscow, 1963. (In Russian)
  2. Alekseenko, S.V., Kuybin, P.A., Okulov, V.L. Vvedenie v teoriyu kontsentrirovannykh vikhrey [Introduction to Concentrated Vortex Theory]. Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003. (In Russian)
  3. Borisov, A.V., Mamaev, I.S., Sokolovskiy, M.A. Fundamental'nye i prikladnye problemy teorii vikhrey [Fundamental and applied problems of the theory of vortices]. RKhD, Moscow–Izhevsk, 2003. (In Russian)
  4. Kozlov, V.V. Obshchaya teoriya vikhrey [General theory of vortices]. RKhD, Moscow–Izhevsk, 1998. (In Russian)
  5. Seffmen, F.Dzh. Dinamika vikhrey [Vortex dynamics]. Nauchnyy mir, Moscow, 2000. (In Russian)
  6. Meleshko, V.V., Konstantinov, M.Yu. Dinamika vikhrevykh struktur [The dynamics of vortex structures]. Naukova dumka, Kiev, 1993. (In Russian)
  7. Aref, H., Newton, P.K., Stremler, M., Tokieda, T., Vainchtein, D.L. Vortex Crystals. TAM Reports 1008, 2002.
  8. Campbell, L., Ziff, R. A catalog of two-dimensional vortex patterns. Los Alamos Scientific Laboratory. Report No. La-7384-MS, 1978.
  9. Aref, H., Vainchtein, D.L. Asymmetric Equilibrium Patterns of Point Vortices. Nature, 1998, vol. 392, pp. 769–770.
  10. Smeyl, S. Matematicheskie problemy sleduyushchego stoletiya [Mathematical problems of the next century]. In: Sovremennye problemy khaosa i nelineynosti [Modern problems of chaos and nonlinearity]. IKI, Moscow–Izhevsk, 2002, pp. 280–298. (In Russian)
  11. Borisov, A.V., Mamaev, I.S. Matematicheskie metody dinamiki vikhrevykh struktur [Mathematical methods for the dynamics of vortex structures]. IKI, Moscow–Izhevsk, 2005. (In Russian)
  12. Ashbee, T.L., Esler, J.G., McDonald, N.R. Generalized Hamiltonian point vortex dynamics on arbitrary domains using the method of fundamental solutions. J. of Computational Physics, 2013, vol. 246, pp. 289–303.
  13. Gel'mgol'ts, G. Osnovy vikhrevoy teorii [Fundamentals of Vortex Theory]. IKI, Moscow–Izhevsk, 2002. (In Russian)
  14. Lezhnev, V.G., Markovskiy, A.N. O dizhenii tochechnykh vikhrey v ogranichennoy oblasti [On the dilation of point vortices in a limited area]. Spektral'nye i evolyutsionnye zadachi: Trudy Krymskoy Osenney Matematicheskoy Shkoly-Simpoziuma [Spectral and evolutionary problems: Proceedings of the Crimean Autumn Mathematical School-Symposium], 2005, vol. 15, pp. 128–132. (In Russian)
  15. Vladimirov, V.S. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Nauka, Moscow, 1981. (In Russian)
  16. Lezhnev, A.V., Lezhnev, V.G. Metod bazisnykh potentsialov v zadachakh matematicheskoy fiziki i gidrodinamiki [The method of basic potentials in problems of mathematical physics and hydrodynamics]. Kuban State University, Krasnodar, 2009. (In Russian)
  17. Lezhnev, V.G., Markovskiy, A.N. Proektsionnye algoritmy vychisleniya potentsiala Robena [Projection Algorithms for Calculating Robin Potential]. Vychislitel'nye metody i programmirovanie [Computational Methods and Programming], 2019, vol. 20, no. 4, pp. 378–385. (In Russian)
  18. Lezhnev, M.V. Zadachi i algoritmy ploskoparallel'nykh techeniy [Tasks and algorithms of plane-parallel flows]. Kuban State University, Krasnodar, 2009. (In Russian)
  19. Markovskiy, A.N. Modeli ploskikh vikhrevykh techeniy i zadachi ekologii [Models of plane vortex flows and environmental problems]. Abstract of diss. .... cand. phys.-math. science. Krasnodar, 2005. (In Russian)

Issue

Section

Mechanics

Pages

61-68

Submitted

2019-12-08

Published

2020-03-31

How to Cite

Chernaya A.S., Hanazaryan A.D., Markovsky A.N. Algorithm for Moving Point Vortices in a Bounded Area. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 1, pp. 61-68. DOI: https://doi.org/10.31429/vestnik-17-1-2-61-68 (In Russian)