Computational Method for Searching Singular Points on the Plane of Complex Time for Research of Determinated-Chaotic Systems (Using the Example of E. Lorenz System)

Authors

  • Bunyakin A.V. Kuban State University, Krasnodar, Российская Федерация
  • Pshikova I.S. Kuban State University, Krasnodar, Российская Федерация

UDC

531

DOI:

https://doi.org/10.31429/vestnik-17-1-2-69-80

Abstract

The general scheme of search and recognition (identification) of singular points of the solution of dynamic systems is present. Under singular points we understand not a features of the phase flow, but the poles of the functions of the solution components for analytical continuation into the plane of complex time. Pole orders may be different for different components. As examples for calculation, precisely known system exhibiting deterministic chaotic behavior – E. Lorentz system, and also indicates a general scheme for matching of the differential dynamic system solution with the special integer sequence (quantization).
The introduction describes a method for searching for singular points on the plane of complex time, which is a specific variant of numerical integration with the optimal choice of the direction of the next step. Optimization is the minimization of the number of steps, that is, ultimately – the computational time. The second part of the paper describes an algorithm for searching for singular points of the layer closest to the real time axis, and this algorithm is numerically implemented for the Lorentz system. The third (final) part of the paper describes a possible application of the method for constructing quantum-mechanical models of multielectronic systems.

Keywords:

dynamical systems, deterministic chaos, analytic continuation

Author Infos

Aleksey V. Bunyakin

канд. физ.–мат. наук, доцент кафедр математических и компьютерных методов Кубанского государственного университета, оборудования нефтяных и газовых промыслов Кубанского государственного технологического университета, кафедры нефтегазового дела и землеустройства Майкопского государственного технологического университета

e-mail: alex.bunyakin@mail.ru

Irina S. Pshikova

студентка факультета математики и компьютерных наук Кубанского государственного университета, старший лаборант кафедры математических и компьютерных методов Кубанского государственного университета

e-mail: ira.pshikova.98@gmail.com

References

  1. Lorenz, E.N. Deterministic non–periodic flow. J. Atmos. Sci., 1963, vol. 20, pp. 130–141.
  2. Bunyakin, A.V. Osobye tochki resheniya semimernoy sistemy turbulentnosti [Singular points of the solution of the seven-dimensional turbulence system]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics], 1993, no. 6, pp. 968–973. (In Russian)
  3. Bunyakin, A.V. Osobye tochki dinamicheskikh sistem [Singular points of dynamical systems]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [J. of Computational Mathematics and Mathematical Physics], 1995, no. 3, pp. 477–478. (In Russian)
  4. Kondratenya, S.G., Yablonskiy, A.I. Podvizhnye osobye tochki sistem differentsial'nykh uravneniy [Moving singular points of systems of differential equations]. Differentsial'nye uravneniya [Differential equations], 1968, vol. 4, no. 6, pp. 983–990. (In Russian)
  5. Pushkevich, G.E., Yablonskiy, A.I. O podvizhnykh osobykh tochkakh sistemy differentsial'nykh uravneniy, opisyvayushchikh modeli genetiki [On movable singular points of a system of differential equations describing genetic models]. Differentsial'nye uravneniya [Differential equations], 1991, vol. 27, no. 8, pp. 1453–1456. (In Russian)
  6. Klimanshevskaya, I.N., Kondratenya, S.G. Prosteyshie klassy avtonomnykh sistem, ne imeyushchikh resheniy s podvizhnymi nealgebraicheskimi osobymi tochkami [The simplest classes of autonomous systems that do not have solutions with moving non-algebraic singular points]. Differentsial'nye uravneniya [Differential equations], 1991, vol. 27, no. 3, pp. 335–353. (In Russian)
  7. Qin Yuanxun, Zhao Huaizong. Theory of singular points of ordinary differential equations in complex domain. Acta math. Appl. Sin. Eng. Ser., 1992, vol. 8, iss. 4, pp. 316–321.
  8. Grebogi, C., Ott, E., Yorke, J.A. Are three–frequency quasi–periodic orbits to be expected in typical nonlinear systems. Phys. Rev. Lett. 1983(a), vol. 51, pp. 339–345. DOI: 10.1103/PhysRevLett.51.339
  9. Grebogi, C., Ott, E., Yorke, J.A. Crises, sudden changes in chaotic attractors and transients to chaos. Physica D., 1983(b), vol. 7, pp. 181–200.
  10. Poincare, H. Les methodes nouvelles de la mechanique celeste. Gauthier–Villars, 1892. Paris (In English: N.A.S.A. Translation: \mbox{TT F-450/452. U.S. Fed. Clearinghouse, Springfield, VA, USA).
  11. Flower, A.C., McGuines, M.J. A description of the Lorenz attractor at high Prandtl–number. Physika, 1982, vol. D5, iss. 2–3, pp. 149–182.
  12. Zinov'ev, A.T., Shtern, V.N. Struktury stokhasticheskikh traektoriy sistemy Lorentsa [Structures of stochastic trajectories of the Lorentz system]. Chislennye metody mekhaniki sploshnoy sredy [Numerical methods of continuum mechanics], 1983, vol. 14, no. 1, pp. 51–60. (In Russian)
  13. Feigenbaum, M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 1978, vol. 19, pp. 25–52.
  14. Feigenbaum, M.J. Universal behavior in nonlinear systems. Physica D: Nonlinear Phenomena, 1983, vol. 7, iss. 1-–3, pp. 16–39.
  15. Guckenheimer, J., Worfolk, P. Intant chaos. Nonlinearity, 1992, vol. 5, iss. 3, pp. 1211–1222.
  16. Bunyakin, A.V. Osobye tochki resheniya sistemy differentsial'nykh uravneniy Lorentsa [Singular points of the solution of the system of Lorentz differential equations]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [J. of Computational Mathematics and Mathematical Physics], 1991, no. 10, pp. 1489–1497. (In Russian)
  17. Eckmann, J.P. Road to turbulence in dissipative dynamical systems. Rev. Mod. Phys., 1981, vol. 53, pp. 643–654. DOI: 10.1103/RevModPhys.53.643
  18. Campbell, D., Rose, H. (eds.) Order in chaos. Proc. of the Int. Conf. in Los Alamos. Amsterdam, North Holland, 1983.
  19. Golubb, J.P., Benson, S.V. Phase locking in the oscillations leading to turbulence. In: H. Heken (ed.) Pattern formation and pattern recognition. Springer–Heidenberg, New York, 1979.
  20. Jansen, M.N., Bak, P., Bohr, T. Complete Devil’s staircase, fractal dimension and universality of mode–locking structures. Phys. Rev. Lett., 1983(b), vol. 50, pp. 1637–1639.
  21. Libchaber, A., Fauve, S., Laroche, C. Two–parameter study of routes to chaos. Physica D: Nonlinear Phenomena, 1983, vol. 7, pp. 73–84.
  22. Schuster, H.G. Deterministic chaos. An introduction. XXIII. Weinheim, Physik-Verlag, 1984.
  23. Hirsch, M.W., Smale, S., Devaney, R.L. Differential equations, dynamical systems and an introduction to chaos. Elsevier, 2018.
  24. Elhadj, Z. Dynamical systems: Theory and Applications. CRC Press, 2019.
  25. Argyris, J.H., Faust, G., Haase, M., Friedrich, R. An exploration of dynamical system and chaos. Springer, 2015.
  26. Kolmogorov, A.N. O sokhranenii uslovno periodicheskikh dvizheniy pri malom izmenenii funktsii Gamil'tona [On the conservation of conditionally periodic motions with a small change in the Hamilton function]. Doklady Akademii nauk SSSR [Reports of the USSR Academy of Sciences], 1954, vol. 98, no. 4, pp. 527–530. (In Russian)
  27. Arnol'd, V.I. Malye znamenateli II. Dokazatel'stvo teoremy A.N. Kolmogorova o sokhranenii uslovno periodicheskikh dvizheniy pri malom izmenenii funktsii Gamil'tona [Small denominators II. Proof of the theorem of A.N. Kolmogorov on the conservation of conditionally periodic motions with a small change in the Hamilton function]. Uspekhi matematicheskikh nauk [Russian Mathematical Surveys], 1963, vol. 18, pp. 5–13. (In Russian)
  28. Arnold, V.I., Avez, A. Ergodic problems in classical mechanics. Benjamin–New York, 1968.
  29. Mozer, J. Convergent series expansions of quasi-periodic motions. Math. Ann., 1967, vol. 169, iss. 1, pp. 163–173.

Issue

Section

Physics

Pages

69-80

Submitted

2020-01-24

Published

2020-03-31

How to Cite

Bunyakin A.V., Pshikova I.S. Computational Method for Searching Singular Points on the Plane of Complex Time for Research of Determinated-Chaotic Systems (Using the Example of E. Lorenz System). Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 1, pp. 69-80. DOI: https://doi.org/10.31429/vestnik-17-1-2-69-80 (In Russian)