Modeling of the Effective Elastic Characteristics of Foam Materials with Unidirectionally Oriented Non-isometric Pores

Authors

  • Bardushkin V.V. National Research University of Electronic Technology, Moscow, Российская Федерация
  • Sychev A.P. Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Российская Федерация
  • Sychev A.A. Rostov State Transport University, Rostov-on-Don, Российская Федерация
  • Bardushkin A.V. National Research University of Electronic Technology, Moscow, Российская Федерация

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-17-3-22-28

Abstract

In this work, a model for predicting effective elastic characteristics (components of the tensor of effective elastic moduli) of foam polymer materials is constructed with consideration of the volume content and shape of unidirectionally oriented non-isometric pores. The model is based on a generalized singular approximation of random field theory. To calculate the effective elastic characteristics of the foam polymers, an iterative method of self-consistency was used, and the elastic modulus tensor values obtained at the previous iteration step were taken as parameters of a homogeneous comparison body. The elastic parameters in the Voight approximation were taken as the initial values of the parameters of the comparison body. This approximation does not require the inversion of the singular matrix of the elastic moduli tensor for such a component of foam polymers as pores filled with air. The usage of this approach allowed providing calculations of the effective elastic moduli of porous materials.

Based on the developed model, a numerical simulation of the effective elastic characteristics of the foamed epoxides and elastic anisotropy parameters in the directions of the axes of a rectangular coordinate system was carried out in this work. An epoxy binder ED-20 was considered as a matrix. It was reckoned that the pores have the form of ellipsoids of revolution oriented by their main semiaxis along the vertical axis. Simulation considered a change in the volumetric content of pores and a variation in their aspect ratio. Numerical calculations showed that with an increase in porosity, the values of the effective elastic moduli decrease without becoming negative, i.e. foams maintain their integrity at a high pore concentration. In addition, an increase in both the volumetric content of pores and deviations from unity of the value of their aspect ratio leads to increased anisotropy in the directions of all axes of the rectangular coordinate system (especially along the direction of the vertical axis).

Keywords:

modeling, foam-polymer material, foam-epoxy material, pores, epoxy binder, effective elastic moduli, anisotropy

Author Infos

Vladimir V. Bardushkin

д-р физ.-мат. наук, профессор кафедры "Высшая математика №2" Национального исследовательского университета "МИЭТ"

e-mail: bardushkin@mail.ru

Aleksandr P. Sychev

канд. физ.-мат. наук, заведующий лабораторией "Транспорт, композиционные материалы и конструкции" Федерального исследовательского центра Южный научный центр РАН

e-mail: alekc_sap@mail.ru

Aleksey A. Sychev

канд. техн. наук, ведущий инженер кафедры "Теоретическая механика" Ростовского государственного университета путей сообщения

e-mail: alexsis1983@gmail.com

Andrey V. Bardushkin

магистрант кафедры проектирования и конструирования интегральных микросхем Национального исследовательского университета "МИЭТ"

e-mail: i170k@yandex.ru

References

  1. Berlin, A.A., Shutov, F.A. Strengthened gas-filled plastics. Khimiya, Moscow, 1980. (In Russian)
  2. Tarakanov, O.G., Shamov, I.V., Al'pern, V.D. Filled foam plastics. Khimiya, Moscow, 1989. (In Russian)
  3. Telegin, V.A., Telegina, E.B., Gorev, V.A., Shestakov, S.P., Remizov, V.V., Mikhajlov, N.V., Timonin, V.I., Gazijants, A.P. Mi>Patent RU 2187433. Method for production of heat-insulating material based on sintact froth, heat-insulated pipe and method for application of heat-insulating coating on pipe outer surface. Ann. 21.10.1999. Publ. 20.08.2002. Bull. no. 23. (In Russian)
  4. Kocherzhenko, A.V., Sulejmanova, L.A., Kocherzhenko, V.V. Mi>Patent RU 2694325. Heat-insulating material based on foamed polyurethane. Ann. 25.06.2018. Publ. 11.07.2019. Bull. no. 20. (In Russian)
  5. Pontik'ello, A., Gidoni, D., Felisari, R. Mi>Patent RU 2526549. Composition, based on foamed vinylaromatic polymers with improved heatinsulating ability, methods of its obtaining and foamed product, obtained from thereof. Ann. 01.05.2009. Publ. 27.08.2014. Bull. no. 24. (In Russian)
  6. Markelov, V.V., Kremenchugskij, M.V., Pinegin, A.V. Mi>Patent RU 2528842. Method of making components from ultrafine porous polymer material. Ann. 09.04.2013. Publ. 20.09.2014. Bull. no. 26. (In Russian)
  7. Levin, V.A., Lokhin, V.V., Zingerman, K.M. On the construction of effective defining relations for porous materials with randomly distributed pores at finite strains and their superposition. Mi>Izvestiya vuzov. Severo-Kavkazskiy region. Yestestvennyye nauki [Bulletin of higher education institutes North Caucasus region. Natural sciences], 2000, special iss., pp. 107–115. (In Russian)
  8. Bayuk, I.O. The theoretical basis for determining the effective physical properties of hydrocarbon reservoirs. Mi>Yezhegodnik RAO [RAE Yearbook], 2011, iss. 12, pp. 107–120. (In Russian)
  9. Bayuk, I.O. Mi>Interdisciplinary approach to predicting macroscopic and filtration-capacitive properties of hydrocarbon reservoirs. Dr. phys.-math. sci. diss. Moscow, 2013. (In Russian)
  10. Bardushkin, V.V., Sorokin, A.I., Sychev, A.P. Modeling of performance elastic properties of polymer-based composites with lubricated spherical microcapsules and disperse inclusions of E-glass. Mi>Treniye i smazka v mashinakh i mekhanizmakh [Friction & lubrication in machines and mechanisms], 2015, no. 10, pp. 43–47. (In Russian)
  11. Kolesnikov, V.I., Bardushkin, V.V., Kolesnikov, I.V., Myasnikov, F.V., Sychev, A.P., Yakovlev, V.B. Forecasting the operational elastic properties of tribocomposites with microcapsules filled with liquid lubricant. Mi>Sborka v mashinostroyenii, priborostroyenii [Assembling in mechanical engineering and instrument-making], 2017, vol. 18, no. 9, pp. 398–403. (In Russian)
  12. Bardushkin, V.V., Lavrov, I.V., Bardushkin, A.V., Yakovlev, V.B., Sychev, A.P., Sychev, A.A. Predicting the operational elastic characteristics of foam-polymer materials. Mi>Sborka v mashinostroyenii, priborostroyenii [Assembling in mechanical engineering and instrument-making], 2020, vol. 21, no. 6, pp. 265–269. DOI: 10.36652/0202-3350-2020-21-6-265-269 (In Russian)
  13. Shermergor, T.D. Mi>Micromechanics of inhomogeneous medium. Nauka, Moscow, 1977. (In Russian)
  14. Kolesnikov, V.I., Bardushkin, V.V., Yakovlev, V.B., Sychev, A.P., Kolesnikov, I.V. Micromechanics of polycrystals and composites (stress-strain state and destruction). Rostov State Transport University Publ., Rostov-on-Don, 2012. (In Russian)
  15. Pan'kov, A.A. Mi>Methods of self-consistency mechanics of composites. Perm State Technical University Publ., Perm, 2008. (In Russian)
  16. Grigor'ev, I.S., Meilikhov, E.Z. (eds.) Mi>Physical Quantities: A Handbook. Energoatomizdat, Moscow, 1991. (In Russian)
  17. Lapitsky, V.A., Kricuk, A.A. Mi>Physical and mechanical properties of the epoxy polymers and fiberglasses. Naukova Dumka, Kiev, 1986. (In Russian)

Issue

Section

Mechanics

Pages

22-28

Submitted

2020-06-25

Published

2020-09-28

How to Cite

Bardushkin V.V., Sychev A.P., Sychev A.A., Bardushkin A.V. Modeling of the Effective Elastic Characteristics of Foam Materials with Unidirectionally Oriented Non-isometric Pores. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 3, pp. 22-28. DOI: https://doi.org/10.31429/vestnik-17-3-22-28 (In Russian)