Analytical and numerical modeling of a stationary boundary value problem of diffusion-convection-decay for a homogeneous layer based on the equations of turbulent diffusion

Authors

  • Krivosheeva M.A. Kuban State University, Krasnodar, Российская Федерация
  • Lapina O.N. Kuban State University, Krasnodar, Российская Федерация
  • Nesterenko A.G. Kuban State University, Krasnodar, Российская Федерация
  • Nikitin Yu.G. Kuban State University, Krasnodar, Российская Федерация
  • Syromyatnikov P.V. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Российская Федерация

UDC

539.3

DOI:

https://doi.org/10.31429/vestnik-17-3-37-47

Abstract

For comparison and testing purposes, an analytical and numerical method has been developed for solving the boundary value problem of convection-diffusion-decay for a homogeneous layer. A model stationary boundary value problem of the third kind is described by the equations of turbulent diffusion. In the analytical model, the Fourier symbol of the Green's function for the boundary value problem is constructed, the calculation of the Fourier integral is based on the theory of residues. In the numerical model, the Fourier integral is calculated using an algorithm based on the Gauss-Kronrod formulas.
In the two-dimensional case, comparative calculations for the near and middle zones showed good agreement between the results. The accuracy of calculations within each model can be changed by several orders of magnitude. Calculations of the substance concentration function for two plane problems of convection-diffusion-decay are given as examples. The implementation of the analytical method in the flat case is relatively straightforward. Numerical calculation is much simpler and more convenient for engineering and serial scientific calculations.
Numerical integration is realized just as easily in the spatial case as in the two-dimensional case, but the counting time increases significantly. Therefore, a balance is required between the required accuracy and the calculation time. For the spatial case, an analytical approach based on the theory of residues was fundamentally developed in the works of other authors. However, the method is rather cumbersome and better suited for theoretical research.

Keywords:

stationary turbulent diffusion in a layer, boundary value problem of the third kind, Green's function, Fourier transform, theory of residues, numerical integration

Acknowledgement

Работа выполнена в рамках реализации Госзадания ЮНЦ РАН на 2020 г. (№ г.р. 01201354241) при частичной поддержке гранта РФФИ и администрации Краснодарского края (проект 19-41-230011 р_а).

Author Infos

Margarita A. Krivosheeva

магистрант кафедры математического моделирования Кубанского государственного университета

e-mail: margarita.krivoscheeva@gmail.com

Olga N. Lapina

канд. физ.-мат. наук, доцент кафедры вычислительных технологий Кубанского государственного университета

e-mail: olga_ln@mail.ru

Aleksandr G. Nesterenko

канд. физ.-мат. наук, доцент кафедры физики информационных систем Кубанского государственного университета

e-mail: agnest@mail.ru

Yuri G. Nikitin

канд. физ.-мат. наук, доцент кафедры теоретической физики и компьютерных технологий Кубанского государственного университета

e-mail: yug@fpm.kubsu.ru

Pavel V. Syromyatnikov

д-р физ.-мат. наук, ведущий научный сотрудник лаборатории математики и механики краснодарского отделения Южного научного центра РАН, профессор кафедры математического моделирования Кубанского государственного университета

e-mail: syromyatnikov_pv@mail.ru

References

  1. Samarsky, A.A., Vabishchevich, P.N. Numerical methods for solving convection-diffusion problems. Librokom, Moscow, 2015. (In Russian)
  2. Samarov, Sh.Sh. Exact and approximate analytical methods for solving direct, contact and inverse problems of heat conduction. Abstract ... cand. physical-mat. sciences. Dushanbe. 2004. (In Russian)
  3. Babeshko, V.A., Pavlova, A.V., Babeshko, O.M., Evdokimova, O.V. Mathematical modeling of ecological processes of the spread of pollutants. Krasnodar, Kuban State University, 2009. (In Russian)
  4. Beckman, I.N. Higher mathematics: the mathematical apparatus of diffusion. Yurayt Publishing House, Moscow. 2018. (In Russian)
  5. Krasnov, M.L., Kiselev, A.I., Makarenko, G.I. Complex variable functions. 3rd ed. Fizmatlit, Moscow, 2003. (In Russian)
  6. International library of mathematical subroutines IMSL. Available at: https:// www.roguewave.com/products-services/imsl-numerical-libraries (date accessed: 15.08.2020).
  7. Notaris, S.E. An overview of results on the existence and nonexistence and the error term of Gauss – Kronrod quadrature formulas. In: Zahar R.V.M. (ed.) Approximation and Computation, Birkhäuser, 1995, pp. 485–496.
  8. Kosobutskaya, E.V. Some models of the spread of hazardous pollutants in stationary conditions. Abstract ... cand. physical-mat. sciences, Krasnodar, 1998. (In Russian)
  9. Syromyatnikov, P.V., Krivosheeva, M.A., Lapina, O.N., Nesterenko, A.G., Nikitin, Yu.G. Statsionarnyye protsessy diffuzii-konvektsii-raspada v odnorodnom poluprostranstve [Stationary diffusion-convection-decay processes in a homogeneous half-space]. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation], 2019, vol. 16, no. 4, pp. 31–42. DOI: 10.31429/vestnik-16-4-31-42 (In Russian)

Issue

Section

Mechanics

Pages

37-47

Submitted

2020-08-19

Published

2020-09-28

How to Cite

Krivosheeva M.A., Lapina O.N., Nesterenko A.G., Nikitin Yu.G., Syromyatnikov P.V. Analytical and numerical modeling of a stationary boundary value problem of diffusion-convection-decay for a homogeneous layer based on the equations of turbulent diffusion. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 3, pp. 37-47. DOI: https://doi.org/10.31429/vestnik-17-3-37-47 (In Russian)