Mathematical Modeling of Autwave Process in a Thin Layer of Magnetic Colloid

Authors

  • Chekanov V.S. North Caucasian Federal University, Stavropol, Российская Федерация
  • Kovalenko A.V. Kuban State University, Krasnodar, Российская Федерация
  • Diskaeva E.N. MIREA - Russian Technological University branch in Stavropol, Stavropol, Российская Федерация
  • Kirillova E.V. RheinMain University of Applied Sciences in Wiesbaden, Wiesbaden, Germany

UDC

538.97:539.216:539.23

DOI:

https://doi.org/10.31429/vestnik-17-4-57-67

Abstract

At present, quite complex models of autowave processes have been developed that are suitable for their quantitative description. They are boundary value problems for systems of nonlinear partial differential equations, however, their solution and interpretation of the results are rather difficult. Therefore, it is relevant to construct simplified models of autowaves, which make it possible to study and analyze their basic properties.

The scientific novelty of the work is the developed new adequate mathematical 1D models of the autowave process. This process has been experimentally recorded in a thin layer of a magnetic colloid (magnetic fluid). In addition, the scientific novelty of this study lies in the fact that the authors obtained solutions in the environment of computer modeling of physical processes COMSOL Multiphysics 5.5. The predictive value of this model is the determination of the critical value of the potential jump, the determination of the time to establish the oscillation period and other characteristics of the process.

Keywords:

autowaves, magnetic fluid, computer modeling, mathematical modeling, nonlinear processes, 1D model of an autowave process, particle recharge, COMSOL

Acknowledgement

Исследование выполнено в рамках работы Международной лаборатории компьютерного и математического моделирования нелинейных процессов "Computer and mathematical modeling of nonlinear processes".

Author Infos

Vladimir S. Chekanov

канд. техн. наук, доцент, доцент кафедры информационных систем и технологий Северо-Кавказского федерального университета, доцент кафедры информационных технологий филиала МИРЭА - Российского технологического университета в г. Ставрополь

e-mail: oranjejam@mail.ru

Anna V. Kovalenko

канд. экон. наук, доцент, заведующая кафедрой интелектуальных информационных систем Кубанского государственного университета

e-mail: savanna-05@mail.ru

Elena N. Diskaeva

доцент кафедры промышленных технологий филиала МИРЭА - Российского технологического университета в г. Ставрополь

e-mail: diskaevapes@mail.ru

Evgenia V. Kirillova

канд. физ.-мат. наук, профессор Университета прикладных наук Рейн Майн в г. Висбаден

e-mail: kirillova@web.de

References

  1. Dikansky, Yu.I., Nechaeva, O.A., Zakinyan, A.R. Deformatsiya mikrokapel' magnitochuvstvitel'noy emul'sii v magnitnom i elektricheskom polyakh [Deformation of the microcapsule of the magnetic emulsion in the magnetic and electric poles]. Kolloidnyy zhurnal [Colloidal Journal], 2006, vol. 68, no. 2, pp. 161–165. (In Russian)
  2. Butenko, A.A., Larionov, Yu.A., Nikitin, L.V. et al. Opticheskaya i magnitnaya interferentsiya v tonkom prozrachnom elektrode, granichashchem s magnitnoy zhidkost'yu [Optical and magnetic interference in a thin transparent electrode bordering a magnetic fluid]. Izvestiya AN SSSR. Seriya fizicheskaya [Izvestiya USSR Academy of Sciences. Series of physical]. 1991, vol. 55, no. 6, pp. 1141–1145. (In Russian)
  3. Chekanov, V.V. Kandaurova, N.V. Chekanov, V.S. Phase autowaves in the near-electrode layer in the electrochemical cell with a magnetic fluid. Journal of Magnetism and Magnetic Materials, 2017, vol. 431, pp. 38–41.
  4. Chekanov, V.V., Kandaurova, N.V., Chekanov, V.S. Eksperimental'noe nablyudenie izmeneniya koeffitsienta otrazheniya sveta ot poverkhnosti razdela sred "voda–magnitnaya zhidkost'" v elektricheskom pole, volnovoe dvizhenie i neustoychivost' poverkhnosti [Experimental observation of the change in the reflection coefficient of light from the interface between the "water-magnetic fluid" media in an electric field, wave motion, instability of the surface]. Zhurnal tekhnicheskoy fiziki [Journal of technical physics], 2014, vol. 84, iss. 9, pp. 26–31. (In Russian)
  5. Electrohydrodynamics. CISM Courses and Lectures. No. 380. Undine. Italy, 1998.
  6. Zhakin, A.I. Electrohydrodynamics: basic concepts, problems and applications. University press, Kursk, 1998.
  7. Zhakin, A.I. Ionnaya elektroprovodnost' i kompleksoobrazovanie v zhidkikh dielektrikakh [Ionic conductivity and complexation in liquid dielectrics]. Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 2003, vol. 173, no. 1, pp. 51–68. (In Russian)
  8. Zhakin, A.I. Near-electrode and transient processes in liquid dielectrics. Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 2006, vol. 176, no. 3, pp. 289–310. (In Russian)
  9. Zhakin, A.I. Electrohydrodynamics. Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 2012, vol. 182, no. 5, pp. 495–520. (In Russian)
  10. Dikansky, Yu.I., Nechaeva, O.A. Strukturnye prevrashcheniya v magnitnoy zhidkosti v elektricheskom i magnitnykh polyakh [Structural transformations in a magnetic fluid in electric and magnetic fields]. Colloid journal [Kolloidnyy zhurnal], 2003, vol. 65, no. 3, pp. 338–342. (In Russian)
  11. Ostroumov, G.A. Mezhelektrodnaya ostsillyatsiya chastits dispersnoy fazy. Vzaimodeystvie elektricheskikh i gidrodinamicheskikh poley [Interelectrode oscillation of dispersed phase particles. Interaction of electric and hydrodynamic fields]. Nauka, Moscow, 1979. (In Russian)
  12. Shilov, V.N., Deynega, Yu.F. K teorii effektov mezhelektrodnoy tsirkulyatsii, mezhelektrodnogo szhatiya dispersnoy fazy v nevodnykh dispersnykh sistemakh [On the theory of the effects of interelectrode circulation, interelectrode compression of the dispersed phase in non-aqueous dispersed systems]. Colloid journal [Kolloidnyy zhurnal], 1969, vol. 31, pp. 908–912. (In Russian)
  13. Chekanov, V.V., Kandaurova, N.V., Chekanov, V.S. Calculation of the membrane thickness of magnetite nanoparticles on the surface of the transparent conductive electrode in the electric field. Journal of Nano- and Electronic Physics, 2015, vol. 7, iss. 4, part 1, pp. 04041–04043.
  14. Chekanov, V.V. Kandaurova, N.V. Chekanov, V.S. Thickness Calculation of thin transparent conductive membrane on the border with a magnetic fluid. Journal of Nano- and Electronic Physics, 2016, vol. 8, iss. 4, pp. 04045–04048.
  15. Newman, J. Elektrokhimicheskie sistemy [Electrochemical systems]. Mir, Moscow, 1977. (In Russian)

Issue

Section

Physics

Pages

57-67

Submitted

2020-12-13

Published

2020-12-27

How to Cite

Chekanov V.S., Kovalenko A.V., Diskaeva E.N., Kirillova E.V. Mathematical Modeling of Autwave Process in a Thin Layer of Magnetic Colloid. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 4, pp. 57-67. DOI: https://doi.org/10.31429/vestnik-17-4-57-67 (In Russian)