Straightening properties of heterostructures based on fullerene and hybrid zinc complex

Authors

  • Tyutyunik A.S. Vernadsky Crimean Federal University, Simferopol, Российская Федерация

UDC

539.23, 546.26, 535.34, 537.311.

DOI:

https://doi.org/10.31429/vestnik-18-2-56-61

Abstract

This work presents the results of using a new coordination compound C24H24N6O3Zn as a component for constructing heterostructures based on C60 fullerene. A procedure for the synthesis and preparation of a hybrid material is described. The formation of film structures from initial powder materials was carried out by pouring from a solution onto substrates using various types of solvents. The results of microscopy of the surfaces of the obtained films, as well as optical and luminescent properties are presented. Additionally, the optical band gap of the obtained films from hybrid materials was calculated. The addition of a zinc complex to a bond with fullerene suggests the appearance of a potential barrier at the interface between active layers. The resulting thin-film structures have rectifying light current-voltage characteristics. Additionally, the possibility of using the theoretical Poole--Frenkel model to explain the hopping conduction mechanism of the heterostructure under study is considered.

Keywords:

zinc complex, thin-film structures, optical band gap, current-voltage characteristics, fullerene, Poole-Frenkel model

Acknowledgement

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-32-90038.

Author Info

Andrey S. Tyutyunik

аспирант кафедры радиофизики и электроники Крымский федеральный университет им. В.И. Вернадского

e-mail: tyutyunikas@mail.ru

References

  1. Eliseeva, S.V., Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev., 2010, vol. 39, iss. 1, pp. 189–227. DOI: 10.1039/B905604C
  2. Binnemans, K. Lanthanide-based luminescent hybrid materials. Chemical Reviews, 2009, vol. 109, iss. 9, pp. 4283–4374. DOI: 10.1021/cr8003983
  3. Amgar, D., Aharon, S., Etgar, L. Inorganic and hybrid organo-metal perovskite nanostructures: synthesis, properties, and applications. Advanced Functional Materials, 2016, vol. 26, iss. 47. P. 8576–8593. DOI: 10.1002/adfm.201603752
  4. Pashaei, B., Karimi, S., Shahroosvand, H., Abbasi, P., Pilkington, M., Bartolotta, A., Fresta, E., Fernandez-Cestau, J., Costa, R.D., Bonaccorso, F. Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, vol. 48, pp. 5033–5139. DOI: 10.1039/C8CS00075A
  5. Tanaka, H., Tokito, S., Taga, Y., Okada, A. Novel metal-chelate emitting materials based on polycyclic aromatic ligands for electroluminescent devices. Journal of Materials Chemistry, 1998, vol. 8, iss. 9, pp. 1999–2003. DOI: 10.1039/A803308K
  6. Evans, R.C., Douglas, P., Winscom, C.J. Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes. Coordination Chemistry Reviews, 2006, vol. 250, iss. 15–16, pp. 2093–2126. DOI: 10.1016/j.ccr.2006.02.007
  7. Minei, P., Fanizza, E., Rodríguez, A.M., Muñoz-García, A.B., Cimino, P., Pavone, M., Pucci, A. Cost-effective solar concentrators based on red fluorescent Zn(ii)-salicylaldiminato complex. RSC Advances, 2016, vol. 6, iss. 21, pp. 17474–17482. DOI: 10.1039/C5RA23049G
  8. Gusev, A.N., Kiskin, M.A., Braga, E.V., Chapran, M., Wiosna-Sałyga, G., Baryshnikov, G.V., Minaeva, V.A., Minaev, B.F., Ivaniuk, K., Stakhira, P., Ågren, H., Linert, W. A Novel Zinc Complex with Ethylenediamine Schiff Base for Highly Luminance Blue Fluorescent OLED Applications. The Journal of Physical Chemistry C, 2019, vol. 123, iss. 18, pp. 11850–-11859. DOI: 10.1021/acs.jpcc.9b02171
  9. Gusev, A.N., Mazinov, A.S., Shevchenko, A.I., Tyutyunik, A.S., Gurchenko, V.S., Braga, E.V. The Voltage–Current Characteristics and Photoelectric Effect of Fullerene C60–N-Isoamylisatin 4-Methylphenylhydrazone Heterostructures. Technical Physics Letters, 2019, vol. 45, iss. 10, pp. 997–1000. DOI: 10.1134/S1063785019100080
  10. Mazinov, A.S., Tyutyunik, A.S., Gurchenko, V.S., Ilina, V.Y. Effect of masses of active layers of C60-4-methylphenylhydrazone N-isoamylisatin fullerene heterostructures on their rectifying characteristics. RENSIT, 2020, vol. 12, iss. 3, pp. 361–368. DOI: 10.17725/rensit.2020.12.361
  11. Gusev, A., Braga, E., Tyutyunik, A., Gurchenko, V., Berezovskaya, M., Kryukova, M., Kiskin M., Linert, W. Synthesis, Photoluminescence and Electrical Study of Pyrazolone-Based Azomethine Ligand Zn(II) Complexes. Materials, 2020, vol. 13, iss. 24, pp. 5698. DOI: 10.3390/ma13245698
  12. Mazinov, A.S., Tyutyunik, A.S., Gurchenko, V.S. Change in spectral characteristics and conductivity of fullerene films depending on the type of solvent. Applied Physics, 2020, no. 2, pp. 64–99. (In Russian)
  13. Gusev, A.N., Mazinov, A.S., Tyutyunik, A.S., Fitaev, I.Sh., Gurchenko, V.S., Braga, E.V. Effect of Doping with N, Br, and F Atoms on Electrodynamic Characteristics and Physical Properties of Isatin-β-anil. Tech. Phys., 2021, vol. 66, pp. 84–92. DOI: 10.1134/S1063784221010102
  14. Ziminov, V.M., Zakharova, I.B. The rectifying properties of C60 fullerene-based structures. St. Petersburg Polytechnic University Journal - Physics and Mathematics, 2012, no. 2(146), pp. 18–21. (In Russian)
  15. Ushakov, A.V., Barshutina, M.N., Barshutin, S.N. Investigation of the efficiency of resonant tunneling method to control the concentration of fullerenes in organosilicon composites. Transactions TSTU, 2015, vol. 21, no. 3, pp. 526–531. DOI: 10.17277/vestnik.2015.03.pp.526-531 (In Russian)

Issue

Section

Physics

Pages

56-61

Submitted

2021-04-17

Published

2021-06-28

How to Cite

Tyutyunik A.S. Straightening properties of heterostructures based on fullerene and hybrid zinc complex. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, vol. 18, no. 2, pp. 56-61. DOI: https://doi.org/10.31429/vestnik-18-2-56-61 (In Russian)