Computational aspects of calculating the vertical velocity component in a hydrodynamic model

Authors

  • Kochergin S.V. Marine Hydrophysical Institute, Sevastopol, Российская Федерация
  • Fomin V.V. Marine Hydrophysical Institute, Sevastopol, Российская Федерация

UDC

519.63

DOI:

https://doi.org/10.31429/vestnik-18-2-14-18

Abstract

The paper considers a method for calculating the vertical velocity component in a dynamic model based on the run-through algorithm. The procedure is based on differentiating the continuity equation by the vertical coordinate and solving the resulting equation taking into account both boundary conditions, at the bottom and at the surface. The use of such a procedure allows us to obtain a certain increase in the kinetic energy, the vertical component of vorticity, and especially the maximum velocities due to the lack of circuit viscosity when approximating the second-order derivative vertically.

Keywords:

dynamic model, vertical velocity calculation, run-through method of scheme viscosity, Azov sea

Acknowledgement

Работа выполнена в рамках государственного задания по теме 0555-2021-0005 "Комплексные междисциплинарные исследования океанологических процессов, определяющих функционирование и эволюцию экосистем прибрежных зон Черного и Азовского морей" (шифр "Прибрежные исследования").

Author Infos

Sergei V. Kochergin

старший научный сотрудник, отдел морских информационных систем и технологий, Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Морской гидрофизический институт РАН»

e-mail: vskocher@gmail.com

Vladimir V. Fomin

заведующий отделом, Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр «Морской гидрофизический институт РАН»

e-mail: v.fomin@ukr.net

References

  1. Marchuk, G.I., Sarkisyan, A.S. Matematicheskoe modelirovanie tsirkulyatsii okeana [Mathematical modeling of ocean circulation]. Nauka, Moscow, 1988. (In Russian)
  2. Eremeev, V.N., Kochergin, V.P., Kochergin, S.V., Sklyar, S.N. Matematicheskoe modelirovanie gidrodinamiki glubokovodnykh basseynov [Mathematical modeling of hydrodynamics of deep-water basins]. Ekosi-gidrofizika, Sevastopol, 2001. (In Russian)
  3. Kochergin, V.P., Dunets, T.V. Computational algorithm of the evaluations of inclinations of the level in the problems of the dynamics of basins. Physical oceanography, 2001, vol. 11, iss. 3, pp. 221–232.
  4. Kochergin, V.S., Kochergin, S.V., Sklyar, S.N. Analiticheskaya testovaya zadacha vetrovykh techeniy [Analytical test problem of wind currents]. Protsessy v geosredakh [Processes in geomedia], 2019, no. 2 (20), pp. 193–198. (In Russian)
  5. Ivanov, V.A., Fomin, V.V. Matematicheskoe modelirovanie dinamicheskikh protsessov v zone more–susha [Mathematical modeling of dynamic processes in the sea – land zone]. EKOSI-gidrofizika, Sevastopol, 2008. (In Russian)
  6. Fomin, V.V. Chislennaya model' tsirkulyatsii vod Azovskogo morya [Numerical model of the Azov sea water circulation]. Nauchnye trudy UkrNIGMI [Scientific works of UkrNIGMI], 2002, iss. 249, pp. 246–255. (In Russian)
  7. Godunov, S.K., Ryaben'kiy, V.S. Raznostnye skhemy [finite-difference scheme]. Nauka, Moscow, 1973. (In Russian)
  8. Dorr, F.W. An example of ill-condition in the numerical solution of singular perturbation problems. Math. Comput., 1971, vol. 25, iss. 144, pp. 144–283.
  9. Kochergin, V.S., Kochergin, S.V., Stanichnyy, S.V. Variatsionnaya assimilyatsiya sputnikovykh dannykh poverkhnostnoy kontsentratsii vzveshennogo veshchestva v Azovskom more [Variational assimilation of satellite data on the surface concentration of suspended matter in the Sea of Azov]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space], 2020, vol. 17, no. 2, pp. 40–48. DOI: 10.21046/2070-7401-2020-17-2-40-48 (In Russian)

Issue

Section

Mechanics

Pages

14-18

Submitted

2021-04-27

Published

2021-06-28

How to Cite

Kochergin S.V., Fomin V.V. Computational aspects of calculating the vertical velocity component in a hydrodynamic model. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, vol. 18, no. 2, pp. 14-18. DOI: https://doi.org/10.31429/vestnik-18-2-14-18 (In Russian)