Mathematical modeling of nonstationary 1:1 electrolyte transfer and study of the space charge region in membrane systems taking into account electric convection and water dissociation/recombination reactions

Authors

  • Urtenov M.Kh. Kuban State University, Krasnodar, Российская Федерация
  • Kovalenko A.V. Kuban State University, Krasnodar, Российская Федерация
  • Sharafan M.V. Kuban State University, Krasnodar, Российская Федерация
  • Gudza V.A. Kuban State University, Krasnodar, Российская Федерация
  • Chubyr N.O. Kuban State University, Krasnodar, Российская Федерация

UDC

544.638.2:001.891.573

DOI:

https://doi.org/10.31429/vestnik-18-2-62-71

Abstract

The article formulates a mathematical model of non-stationary transfer of 1:1 electrolyte in potentiodynamic mode, taking into account electroconvection and non-catalytic reaction of dissociation/recombination of water molecules in membrane systems, which are considered the channel of desalting of the electrodialysis apparatus. Using this model, the main regularities of the space charge distribution are theoretically established, the influence of the input parameters is determined: initial concentration, potential sweep rate, etc. It is shown that the desalination channel consists of narrow quasi-equilibrium regions of space charge adjacent to ion-exchange membranes; an electric double layer appears in the central part, caused by the recombination reaction. Regions of electroneutrality are located between this double electric layer and the near-membrane space charge regions. This study will further be used to analyze the combined effect of the noncatalytic reaction of dissociation of water molecules and recombination and electroconvection on the current-voltage characteristic of the desalting channel.

Keywords:

dissociation/recombination of water molecules, computer modeling, mathematical modeling, electroconvection, 2D modeling, unsteady transfer, desalination channel of the electrodialysis device, COMSOL

Acknowledgement

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта 19-08-00252 А "Теоретическое и экспериментальное исследование вольтамперных характеристик электромембранных систем".

Author Infos

Makhamet Kh. Urtenov

д-р физ.-мат. наук, профессор, заведующий кафедрой прикладной математики Кубанского государственного университета

e-mail: urtenovmax@mail.ru

Anna V. Kovalenko

канд. физ.-мат. наук,  доцент кафедры прикладной математики Кубанского государственного технологического университета

e-mail: savanna-05@mail.ru

Mikhail V. Sharafan

канд. хим. наук, доцент кафедры физической химии, проректор по научной работе и инновациям Кубанского государственного университета

e-mail: science-pro@kubsu.ru

Vitaliy A. Gudza

аспирант кафедры прикладной математики Кубанского государственного университета

e-mail: flash.wetal@mail.ru

Nataliya O. Chubyr

канд. физ.-мат. наук,  доцент кафедры прикладной математики Кубанского государственного технологического университета

e-mail: chubyr-natalja@mail.ru

References

  1. Frilette, V.J. Preparation and Characterization of Bipolar Ion Exchange Membranes. J. Phys. Chem., 1956, vol. 60, pp. 435–439. DOI: 10.1021/j150538a013
  2. Kressman, T.R.E., Tye, F.L. The effect of current density on the transport of ions through ion-selective membranes. Discuss. Faraday Soc., 1956, vol. 21, pp. 185–192.
  3. Block, M., Kitchener J.A. The phenomenon of polarization in an industrial ion-exchange membranes. J. Electrochem. Soc., 1966. vol. 113, pp. 947. DOI: 10.1149/1.2424162
  4. Greben, V.P., Pivovarov, N.Y., Kovarskii, N.Y., Nefedova, G.V. Influence of ion-exchange resin nature on physic-chemical properties of bipolar membranes. Sov. J. Phys. Chem., 1978, vol. 52, pp. 2641–2645.
  5. Zabolotskii, V.I., Nikonenko, V.V., Korzhenko, N.M., Seidov, R.R., Urtenov, M.K. Mass Transfer of Salt Ions in an Electromembrane System with Violated Electroneutrality in the Diffusion Layer: The Effect of a Heterolytic Dissociation of Water. Russ. J. Electrochem., 2002, vol. 38, pp. 810–818. DOI: 10.1023/A:1016849309018
  6. Urtenov, M.K., Kirillova, E.V., Seidova, N.M., Nikonenko, V.V. Decoupling of the Nernst-Planck and Poisson equations. Application to a membrane system at overlimiting currents. J. Phys. Chem., 2007, vol. 111, P. 14208–14222. DOI: 10.1021/jp073103d
  7. Simons, R. Effect of the electric field on proton transfer between ionized groups and water in ion exchange membranes. Electrochim. Acta, 1984, vol. 29, pp. 151–158. DOI: 10.1016/0013-4686(84)87040-1
  8. Rubinstein, I., Maletzki, F. Electroconvection at an electrically inhomogeneous permselective membrane surface. Trans. Faraday Soc., 1991, vol. 87, pp. 2079–2087. DOI: 10.1039/FT9918702079
  9. Nikonenko, V., Kovalenko, A., Urtenov, M., Pismenskaya, N., Han, J., Sistat, P., Pourcelly, G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 2014, vol. 342, pp. 85–106. DOI: 10.1016/j.desal.2014.01.008
  10. Urtenov, M.K., Pis'menskiy, A.V., Nikonenko, V.V., Kovalenko, A.V. Mathematical modeling of ion transport and water dissociation at the ion-exchange membrane/solution interface in intense current regimes. Petroleum Chemistry 2018, vol. 58, no. 2, pp. 121–129. DOI: 10.1134/S0965544118020056
  11. Kovalenko, A.V., Urtenov, M.Kh., Chubyr, N.O., Uzdenova, A.M., Gudza, V.A. Influence of temperature effects associated with the dissociation/recombination reaction of water molecules and Joule heating of the solution on the stationary transport of salt ions in the diffusion layer. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, vol. 15, no. 4, pp. 67–84. (In Russian) DOI: 10.31429/vestnik-15-4-67-84
  12. Rubinstein, I., Warshawsky, A., Schechtman, L., Kedem, O. Elimination of acid-base generation ("water-splitting") in electrodialysis. Desalination, 1984, vol. 51, pp. 55–60. DOI: 10.1016/0011-9164(84)85052-3
  13. Vasil'eva, V.I., Akberova, E.M., Zabolotskiy, V.I. Electroconvection in systems with heterogeneous ion-exchange membranes after thermal modification. Russian J. of Electrochem., 2017, vol. 53, no. 4, pp. 398–410. DOI: 10.1134/S1023193517040127
  14. Choi, J.-H., Lee, H.-J., Moon, S.-H. Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. J. Colloid Interface Sci. 2001, vol. 238, pp. 188–195.
  15. Listovnichiy, A.V. Prokhozhdenie tokov bol'she predel'nogo cherez sistemu elektrod-rastvor elektrolita [Passage of currents greater than the limit through the electrode-electrolyte solution system]. Elektrokhimiya [Electrochemistry], 1989, vol. 25, no. 12, pp. 1651–1654. (In Russian)
  16. Nikonenko, V.V., Zabolotskiy, V.I., Gnusin, N.P. Elektroperenos ionov cherez diffuzionnyy sloy s narushennoy elektroneytral'nost'yu [Electro-transport of ions through a diffusion layer with broken electroneutrality]. Elektrokhimiya [Electrochemistry], 1989, vol. 25, no. 3, pp. 301–306. (In Russian)
  17. Grafov B.M., Chernenko A.A. Prokhozhdenie postoyannogo toka cherez rastvor binarnogo elektrolita [Passage of direct current through a binary electrolyte solution]. Zhurnal fizicheskoy khimii [Journal of Physical Chemistry], 1963, vol. 37, no. 3, pp. 664–665. (In Russian)
  18. Babeshko, V.A., Zabolotskij, V.I., Kirillova, E.V., Urtenov, M.Kh. Decomposition of Nernst-Planck-Poisson equation. Doklady Akademii nauk, 1995, vol. 343, no. 3, pp. 485–486. (In Russian)
  19. Babeshko, V.A., Zabolotskii, V.I., Seidov, R.R., Urtenov, M.Kh. Decomposition equations for a unidimensional steady-state transfer of electrolyte ions. Russian J. of Electrochem., 1997, vol. 33, no. 8, pp. 785–792.
  20. Babeshko, V.A., Zabolotskii, V.I., Korzhenko, N.M., Seidov, R.R., Urtenov, M.Kh. Decomposition equations for stationary electrolyte transfer in the one-dimensional case. Electrochemistry, 1997, vol. 8. pp. 855–863.
  21. Babeshko, V.A., Zabolotskii, V.I., Seidova, N.M., Seidov, R.R., Urtenov, M.Kh. Decomposition equations for stationary electrolyte transfer in the one-dimensional case. Electrochemistry, 1997, vol. 33, no. 8, pp. 855–862.
  22. Babeshko, V.A., Zabolotsky, V.I., Korzhenko, N.M., Seidov, R.R., Urtenov, M.K. Decomposition of a non-dimensional non-stationary system of Nernst-Planck and Poisson equations. Dokl. Akademii Nauk, 1998, vol. 361, no. 1, pp. 45–46. (In Russian)
  23. Babeshko, V.A., Zabolotskii, V.I., Korzhenko, N.M., Seidov, R.R., Urtenov, M.Kh. The theory of the steady-state transfer of binary electrolytes in a unidimensional case. Russian J. of Electrochem., 1997, vol. 33, iss. 8, pp. 793–800.
  24. Babeshko, V.A., Zabolotskiy, V.I., Urtenov, M.A.Kh., Korzhenko, N.M., Seidov, R.R. The theory of stationary transfer of a binary electrolyte in the Nernst layer. Rep. of the Academy of Sciences, 1998, vol. 361, no. 2, pp. 208–211. (In Russian)
  25. Babeshko, V.A., Zabolotskii, V.I., Korzhenko, N.M., Seidov, R.R., Urtenov, M.Kh. Stationary transport theory of binary electrolytes in the one-dimensional case: numerical analysis. Doklady Physical Chemistry, 1997, vol. 355, no. 4-6, pp. 244–246.
  26. Babeshko, V.A., Zabolotskii, V.I., Korzhenko, N.M., Seidov, R.R., Urtenov, M.Kh. Stationary transport theory of ternary electrolyte in the Nernst layer. Doklady Physical Chemistry, 1998, vol. 361, no. 1–3, pp. 215–218.
  27. Zabolotsky, V.I., Nikonenko, V.V., Pismenskaya, N.D., Laktionov, E.V., Urtenov, M.K., Strathmann, H., Wessling, M., Koops, G.H. Coupled transport phenomena in overlimiting current electrodialysis. Separation and Purification Technology, 1998, vol. 14, no. 1–3, pp. 255–267.
  28. Babeshko, V.A., Zabolotskiy, V.I., Seidov, E.V., Urtenov, M.Kh. Interaction of hydrodynamic and electrochemical fields in membrane processes. Problems of physical and mathematical modeling, Interuniversity subject collection, 1998. (In Russian)
  29. Babeshko, V.A., Zabolotskiy, V.I., Urtenov, M.Kh. Mathematical problems of membrane electrochemistry. Science of Kuban, 2000, Iss. 5 (part 1). Special issue. Materials of the international conference, pp. 3–6. (In Russian)
  30. Urtenov, M., Gudza, V., Chubyr, N., Shkorkina, I. Theoretical analysis of the stationary transport of 1:1 salt ions in a cross-section of a desalination channel, taking into account the non-catalytic dissociation/recombination reaction of water molecules. Membranes, 2020, vol. 10, iss. 11, pp. 342. DOI: 10.3390/membranes10110342
  31. Chubyr N.O., Kovalenko A.V., Urtenov M.K., Sukhinov A.I., Gudza V.A. Modeling and numerical analysis of the effect of dissociation/recombination of water molecules on the transport of salt ions in diffusion layer. Vestnik of Don State Technical University, 2019, vol. 19, no. 3, pp. 268–280. DOI: 10.23947/1992-5980-2019-19-3-268-280

Issue

Section

Physics

Pages

62-71

Submitted

2021-05-28

Published

2021-06-28

How to Cite

Urtenov M.Kh., Kovalenko A.V., Sharafan M.V., Gudza V.A., Chubyr N.O. Mathematical modeling of nonstationary 1:1 electrolyte transfer and study of the space charge region in membrane systems taking into account electric convection and water dissociation/recombination reactions. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, vol. 18, no. 2, pp. 62-71. DOI: https://doi.org/10.31429/vestnik-18-2-62-71 (In Russian)