Green's function and a semi-analytical method for the channel turbulent flow

Authors

  • Sumbatyan M.A. Southern Federal University, Rostov-on-Don, Russian Federation
  • Ricci F. University of Naples, Naples, Italy
  • Vaccaro M. Salern University, Salerno, Italy

UDC

519.68: 681.51 512.573

Abstract

The work offers a semi-analytical method for solving a classical problem of dynamics of viscous fluid in the flow of a turbulent homogeneous current in the channel of a constant width (a 2D problem). In the standard iteration interpretation of incremental motion along a temporary variable, we obtain certain linear elliptical forth-order problem in the band. This work provides an explicit solution in quadratures. To do this, we at first construct the Green's function along the channel with the use of the integral Fourier transform. This function satisfies the necessary boundary conditions for the stream function on the channel borders. Then the solution of the problem is described in an explicit form in terms of this Green's function.

Funding information

Работа выполнена при поддержке INTAS (04-80-7043).

Author info

  • Mezhlum A. Sumbatyan

    д-р физ.-мат. наук, профессор кафедры теоретической гидроаэромеханики Южного федерального университета

  • Fabrizio Ricci

    исследователь факультета аэронавтики Неапольского университета им. Федерико II

  • Massimo Vaccaro

    исследователь Департамента прикладной математики Салернского университета

References

  1. Roache P.J. Computational Fluid Dynamics. Hermosa Publ.: Albuquerque, 1976. 616 p.
  2. Fletcher C.A.J. Computational Methods in Fluid Dynamics. Springer-Verlag: Berlin-Heidelberg, 1988. Vol. 1. 502 p. Vol. 2. 552 p.
  3. Goldstein M.E. Aeroacoustics. McGraw-Hill: New York, 1976. 295 p.
  4. Peyret R., Taylor Th.D. Computational Methods for Fluid Flow. Springer-Verlag: New York, 1983. 352 p.
  5. Moin P., Kim J. Numerical investigation of turbulent channel flow // J. Fluid Mech. 1982. Vol. 118. P. 341-377.
  6. Kim J., Moin P., Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number // J. Fluid Mech. 1987. Vol. 177. P. 133-166.
  7. Rozhdestvensky B.L., Simakin I.N. Modelling of turbulent flows in the plane channel // J. Comp. Math. Math. Phys. 1985. Vol. 25. No 1. P. 96-121.
  8. Nikitin N.V. Direct numerical modelling of three-dimensional turbulent flows in pipes of round cross-section // Mech. Fluids Gases. 1994. No 6. P. 14-26.

Downloads

Download data is not yet available.

Issue

Pages

65-68

Section

Mechanics

Dates

Submitted

June 13, 2007

Accepted

June 16, 2007

Published

June 30, 2007

How to Cite

[1]
Sumbatyan, M.A., Ricci, F., Vaccaro, M., Green’s function and a semi-analytical method for the channel turbulent flow. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2007, № 2, pp. 65–68.