Generalization of 2D conversion system of equations Nernst-Planck-Poisson and hierarchical system of models on the 3D case
UDC
517.958, 544.6Abstract
The purpose of this article is to summarize the conversion Kovalenko A.V. and Urtenova M.H. of two-dimensional system of equations Nernst-Planck-Poisson hierarchical system of mathematical transport models on the 3D case in a dimensionless form. This article discusses two cases: the transport of a binary electrolyte channel electrodialysis desalting device and membrane system with a rotating membrane disk. To achieve this goal was held dimensionless system of equations Nernst-Planck-Poisson in the case of 3D. Thus, in the case of a system with a rotating membrane disc as a characteristic width acted diffusion layer thickness calculated by Levich formula, and as the characteristic velocity - the speed of the feed solution to its depth the surface of the membrane disc. Further assessment was made of the dimensionless variables: Pecle number and the parameter on the basis of this assessment was made to simplify the decomposition equations Nernst-Planck-Poisson derived a mathematical model of transport in the approximation of a generalization of Ohm's law (LOM) in a cartesian coordinate system in the case of 3D. Then, the resulting model was transferred to LOM cylindrical coordinate system, taking into account the axial symmetry, thereby transferring model was obtained with a rotating disc membrane approximation generalizations Ohm's law.
Keywords:
desalting, rotating membrane disk, electrodialysis apparatus, Nernst-Planck-Poisson, cylindrical coordinate systemFunding information
Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта 16-08-00128_а "Теоретическое и экспериментальное исследование гравитационной конвекции в мембранных системах с учетом реакции диссоциации/рекомбинации молекул воды".
References
- Уртенов М.Х. Краевые задачи для систем уравнений Нернста-Планка-Пуассона (факторизация, декомпозиция, модели, численный анализ). Краснодар: КубГУ, 1998. 125 с. [Urtenov M.H. Kraevye zadachi dlja sistem uravnenij Nernsta-Planka-Puassona (faktorizacija, dekompozicija, modeli, chislennyj analiz) [Boundary value problems for systems of equations Nernst-Planck-Poisson (factorization, decomposition, model, numerical analysis)]. Krasnodar, KubGU Publ., 1998, 125 p. (In Russian)]
- Никоненко В.В.,Уртенов М.Х. Анализ электродиффузионных уравнений в декомпозиционной форме // Электрохимия, 1996. Т. 32. № 2. С. 207. [Nikonenko V.V., Urtenov M.H. Analiz jelektrodiffuzionnyh uravnenij v dekompozicionnoj forme [Analysis of electrical diffusion equations in the form of the decomposition]. Jelektrohimija [Electrochemistry], 1996, vol. 32, no. 2, p. 207. (In Russian)]
- Письменский А.В.,Уртенов М.Х. Моделирование гравитационной конвекции в электромембранных системах очистки воды // Экологический вестник научных центров Черноморского экономического сотрудничества. 2004, №3, С. 64-69. [Pis'menskij A.V., Urtenov M.H. Modelirovanie gravitacionnoj konvekcii v jelektromembrannyh sistemah ochistki vody [Modeling of Gravitational Convection in electro-membrane water treatment systems]. Jekologicheskij vestnik nauchnyh centrov Chernomorskogo jekonomicheskogo sotrudnichestva [Ecological Bulletin of research centers of the Black Sea Economic Cooperation], 2004, no. 3, pp. 64-69. (In Russian)]
- Узденова А.М.,Коваленко А.В.,Уртенов М.Х. Математические модели электроконвек-ции в электромембранных системах. Кара-чевск: КЧГУ, 2011, 155 с [Uzdenova A.M., Kovalenko A.V., Urtenov M.H. Matematicheskie modeli jelektrokonvekcii v jelektromembrannyh sistemah [Mathematical models of electroconvection in electro-membrane systems]. Karachevsk, KChGU Publ., 2011, 155 p. (In Russian)]
- Коваленко А.В.,Уртенов М.Х.,Герюгова А.А Электроосмос в микро- и наноканалах. Часть 1. Вывод иерархической системы математических моделей с использованием метода декомпозиции // Научный журнал КубГАУ. 2015. Т. 117. № 12. С. 846-865. [Kovalenko A.V., Urtenov M.H., Gerjugova A.A. Jelektroosmos v mikro- i nanokanalah. Chast' 1. Vyvod ierarhicheskoj sistemy matematicheskih modelej s ispol'zovaniem metoda dekompozicii [Electroosmosis in the micro- and nanochannels. Part 1: Conclusion of a hierarchical system of mathematical models using the decomposition method]. Nauchnyj zhurnal KubGAU [Science journal of KubSAU]. 2015, vol. 117, no. 12, pp. 846-865. (In Russian)]
- Левич В.Г. Физико-химическая гидродинамика. М.: Физматгиз, 1959. 700 с. [Levich V.G. Fiziko-himicheskaja gidrodinamika [Physico-chemical hydrodynamics]. Moscow, Fizmatgiz Publ., 1959, 700 p. (In Russian)]
Downloads

Downloads
Dates
Submitted
Accepted
Published
How to Cite
License
Copyright (c) 2016 Казаковцева Е.В.

This work is licensed under a Creative Commons Attribution 4.0 International License.