Variational algorithms for assimilation of measurement data and identification of input parameters of the impurity transfer model
UDC
519.63DOI:
https://doi.org/10.31429/vestnik-20-2-28-36Abstract
Due to the constant development of technical capabilities for obtaining information (including from satellites) about the state of the ocean and seas, the development of modern methods of mathematical modeling of water circulation, it is necessary to create and apply reliable algorithms for assimilation of such information in dynamic models. One of the approaches to solving such a problem is a method based on variational principles, solving conjugate problems and iterative search for the minimum of the prediction quality functional. The model parameters found in this case allow us to obtain a solution that is best consistent with the measurements due to the minimization of the functional. The use of the solution of the conjugate problem (at each iteration of the only one) when constructing gradients in the parameter space, as well as the convexity of the functional, makes it possible to reliably identify the input parameters of the model. Such parameters in the problem of passive impurity transfer can be the initial concentration fields, the flows of matter at the bottom and surface, the power of point sources, the sedimentation rate of particles, turbulent diffusion coefficients and velocity fields. Algorithms for solving the problems of identification of the input parameters of the impurity transfer model are constructed using the variational approach. Algorithms for identifying the initial concentration field and the coefficients of the model are given. An algorithm for identifying the location of the pollution source is proposed. A modified assimilation algorithm based on the evaluation method is proposed, which has advantages over the standard approach under certain conditions. Based on the linearization method, in the case of searching for some constants, it is possible to implement the corresponding modified algorithm. The results can be used to identify the input parameters of a numerical impurity transfer model based on measurement data.
Keywords:
variational approach, parameter identification, adjoint problem, data assimilationAcknowledgement
References
- Sasaki, Y., A fundamental study of the numerical prediction based on the variational principle. Journal of the Meteorological Society of Japan, Ser. 2, 1955, vol. 33, iss. 6, pp. 262–275.
- Sasaki, Y., Some basic formations in numerical variational analysis. Mon. Wea. Rev., 1970, vol. 98, pp. 875–883.
- Marchuk, G.I., Penenko, V.V., Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment. In: Marchuk, G.I. (ed.), Modelling and Optimization of Complex System. Proc. оf the IFIP-TC7 Working conf., Springer, New York, 1978, pp. 240–252.
- Пененко, В.В., Методы численного моделирования атмосферных процессов. Гидрометеоиздат, Ленинград, 1981. [Penenko, V.V., Metody chislennogo modelirovaniya atmosfernykh protsessov = Methods for numerical simulation of atmospheric processes. Gidrometeoizdat, Leningrad, 1981. (in Russian)]
- Лионс, Ж.Л., Оптимальное управление системами, описываемыми уравнениями с частными производными. Мир, Москва, 1972. [Lions, J.L., Optimal'noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi = Optimal control of systems described by partial differential equations. Mir, Moscow, 1972. (in Russian)]
- Лионс, Ж.Л., Управление сингулярными распределенными системами. Наука, Москва, 1987. [Lions, J.L., Upravlenie singulyarnymi raspredelennymi sistemami = Control of Singular Distributed Systems. Nauka, Moscow, 1987. (in Russian)]
- Лионс, Ж.Л., Ценность. Сопряженная функция. Атомиздат, Москва, 1972. [Lyons, J.L., Tsennost'. Sopryazhennaya funktsiya = Value. Associated function. Atomizdat, Moscow, 1972. (in Russian)]
- Марчук, Г.И., Математическое моделирование в проблеме окружающей среды. Наука, Москва, 1982. [Marchuk, G.I., Matematicheskoe modelirovanie v probleme okruzhayushchey sredy = Mathematical Modeling in the Problem of the Environment. Nauka, Moscow, 1982. (in Russian)]
- Марчук, Г.И., Основные и сопряженные уравнения динамики атмосферы и океана. Метеорология и гидрология, 1974, № 2, с. 17–34. [Marchuk, G.I., Basic and conjugate equations of the dynamics of the atmosphere and ocean. Meteorologiya i gidrologiya = Meteorology and Hydrology, 1974, no. 2, pp. 17–34. (in Russian)]
- Talagrand, O., Courtier, P., Variational assimilation of meteorogical observations with the adjoint vorticity equation. Part I: Theory. Quart. J. Roy. Meteorol. Soc., 1987, vol. 113, pp. 1311–1328.
- Le Dimet, F.-X., Talagrand, O., Variational algoritems for analysis and assimilation of meteorological observations. Teoretical aspects. Tellus, ser. A., 1986, vol. 38A, pp. 97–110.
- Le Dimet, F., Nouailler, A., Assimilation of dynamical data in a limited area model. In: Sasaki, Y. (ed.), Variational Methods in Geosciences, Elsevier, 1985, pp. 181–185.
- Тимченко, И.Е., Кочергин, С.В., Вариационный метод прогноза вертикальных распределений температуры. В: Методы и аппаратура для океанологических исследований, 1982, с. 122–126. [Timchenko, I.E., Kochergin, S.V., Variational method for forecasting vertical temperature distributions. In: Metody i apparatura dlya okeanologicheskikh issledovaniy = Methods and equipment for oceanological research, 1982, pp. 122–126. (in Russian)]
- Климок, В.И., Кочергин, С.В., Усвоение спутниковых данных в численной модели динамики океана. В: Численное решение задач динамики океана. Новосибирск, 1982, с. 15–23. [Klimok, V.I., Kochergin, S.V., Assimilation of satellite data in a numerical model of ocean dynamics. In: Chislennoe reshenie zadach dinamiki okeana = Numerical solution of ocean dynamics problems. Novosibirsk, 1982, pp. 15–23. (in Russian)]
- Yu, L., O'Brien, J.J., On the initial condition in parameter estimation. J. Phys. Oceanogr., 1992, vol. 22, pp. 1361–1364.
- Malanotte-Rizzoli, P., Holland W.R., Data constraints applied to models of the ocean general circulation. Part II: The transient, Eddy-Resolving Case. Journal of Physical Oceanography, 1988, vol. 18, iss. 8, pp. 1093–1107.
- Robinson, A.R., Carton, J.A., Pinardi, N., Mooers, Ch.N.K., Dynamical forecasting and dynamical interpolation: an experiment in the California current. Journal of Physical Oceanography, 1986, vol. 16, iss. 9, pp. 1561–1579.
- Elsberry, R.L., Warrenfelt, L.L., Data assimilation tests with an oceanic mixed-layer model. Journal of Physical Oceanography, 1982, vol. 12, iss. 8, pp. 839–850.
- Yu, L., Malanotte-Rezzoli, P., Inverse modeling of seasonal variations in the North Atlantic Ocean. J. Phys. Oceanogr., 1998, vol. 28, p. 902.
- Yu, L., O'Brien, J.J., Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile. J. Phys. Oceanogr., 1991, vol. 21, pp. 709–719.
- Марчук, Г.И., Агошков, В.М., Шутяев, В.П., Сопряженные уравнения и методы возмущений в нелинейных задачах математической физики. Наука, Москва, 1993. [Marchuk, G.I., Agoshkov, V.M., Shutyaev, V.P., Sopryazhennye uravneniya i metody vozmushcheniy v nelineynykh zadachakh matematicheskoy fiziki = Adjoint equations and perturbation methods in nonlinear problems of mathematical physics. Nauka, Moscow, 1993. (in Russian)]
- Агошков, В.И., Лебедев, С.А., Пармузин, Е.И., Численное решение проблемы вариационного усвоения опреативных данных наблюдений о температуре поверхности океана. Известия РАН. Физика атмосферы и океана, 2009, т. 45, № 1, с. 76–107. [Agoshkov, V.I., Lebedev, S.A., Parmuzin, E.I., Numerical solution of the problem of variational assimilation of operational observational data on ocean surface temperature. Izvestiya RAN. Fizika atmosfery i okeana = Proceedings of the Russian Academy of Sciences. Atmospheric and Oceanic Physics, 2009, vol. 45, no. 1, pp. 76–107. (in Russian)]
- Агошков, В.И., Пармузин, Е.И., Шутяев, В.П., Численный алгоритм вариационной ассимиляции данных наблюдений о температуре поверхности океана. ЖВМиМФ, 2008, т. 48, № 8, с. 1371–1391. [Agoshkov, V.I., Parmuzin, E.I., Shutyaev, V.P., Numerical algorithm for variational assimilation of observational data on ocean surface temperature. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki = Journal of Computational Mathematics and Mathematical Physics, 2008, vol. 48, no. 8, pp. 1371–1391. (in Russian)]
- Агошков, В.И., Пармузин, Е.И., Шутяев, В.П., Ассимиляция данных наблюдений в задаче циркуляции Черного моря и анализ чувствительности её решения. Изв. РАН. Физика атмосферы и океана, 2013, т. 49, № 6, с. 643–654. [Agoshkov, V.I., Parmuzin, E.I., Shutyaev, V.P., Observational data assimilation in the Black Sea circulation problem and sensitivity analysis of its solution. Izvestiya RAN. Fizika atmosfery i okeana = Proceedings of the Russian Academy of Sciences. Atmospheric and Oceanic Physics, 2013, vol. 49, no. 6, pp. 643–654. (in Russian)]
- Kochergin, V.S., Kochergin, S.V., Indentification of a pollution source power in the Kazantip bay applying the variation algorithm. Physical Oceanography, 2015, no. 2, pp. 69–76.
- Кочергин, В.С., Кочергин, С.В., Станичный, С.В., Вариационная ассимиляция спутниковых данных поверхностной концентрации взвешенного вещества в Азовском море. Современные проблемы дистанционного зондирования Земли из космоса, 2020, т. 17, № 2, с. 40–48. [Kochergin, V.S., Kochergin, S.V., Stanichny, S.V., Variational assimilation of satellite data on the surface concentration of suspended matter in the Sea of Azov. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa = Modern problems of remote sensing of the Earth from space, 2020, vol. 17, no. 2, pp. 40–48. (in Russian)]
- Shutyaev, V.P., Methods for observation data assimilation in problems of physics of atmosphere and ocean. Izvestiya Atmospheric and Oceanic Physics, 2019, vol. 55, pp. 17–31. DOI: 10.1134/S0001433819010080
- Иванов, В.А., Фомин, В.В., Математическое моделирование динамических процессов в зоне море – суша. ЭКОСИ-гидрофизика, Севастополь, 2008. [Ivanov, V.A., Fomin, V.V., Matematicheskoe modelirovanie dinamicheskikh protsessov v zone more – susha = Mathematical modeling of dynamic processes in the sea – land zone. ECOSY-Hydrophysics, Sevastopol, 2008. (in Russian)]
- Кочергин, В.С., Кочергин, С.В., Использование решения сопряженных задач при идентификации входных параметров модели переноса и планировании эксперимента. Экологический вестник научных центров Черноморского экономического сотрудничества, 2017, № 2, с. 42–47. [Kochergin, V.S., Kochergin, S.V., Using the solution of adjoint problems in identifying the input parameters of the transport model and planning the experiment. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 2, pp. 42–47. (in Russian)] EDN: ZHXFNL
- Кочергин, В.С., Кочергин, С.В., Вариационные алгоритмы идентификации мощности точечного импульсного источника загрязнения. Экологический вестник научных центров Черноморского экономического сотрудничества, 2017, № 3, с. 62–72. [Kochergin, V.S., Kochergin, S.V., Variational algorithms for identifying the power of a point impulse pollution source. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2017, no. 3, p. 62–72. (in Russian)] EDN: ZHLAIX
- Кочергин, В.С., Кочергин, С.В., Модифицированный вариационный алгоритм ассимиляции данных измерений в модели переноса пассивной примеси. Экологический вестник научных центров Черноморского экономического сотрудничества, 2018, № 1, с. 61–67. [Kochergin, V.S., Kochergin, S.V., Modified variational algorithm for assimilation of measurement data in the passive impurity transport model. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, no. 1, p. 61–67. (in Russian)] EDN: YUKAYK
- Дымова О.А., Кочергин В.С., Кочергин С.В. Идентификация местоположения возможного источника загрязнения в акватории Гераклейского полуострова на основе метода сопряженных уравнений. Экологический вестник научных центров Черноморского экономического сотрудничества, 2018, т. 15, № 3, с. 72–77. [Dymova O.A., Kochergin V.S., Kochergin S.V. Identification of the location of a possible source of pollution in the water area of the Herakleian Peninsula based on the method of conjugate equations. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2018, vol. 15, no. 3, pp. 72–77. (in Russian)] DOI: 10.31429/vestnik-15-3-72-77 EDN: YABSYP
- Кочергин, В.С., Кочергин, С.В., Вариационные алгоритмы идентификации мощности импульсного источника загрязнения в модели переноса примеси. Экологический вестник научных центров Черноморского экономического сотрудничества, 2020, т. 17, № 1, ч. 1, с. 62–66. [Kochergin, V.S., Kochergin, S.V., Variational algorithms for identifying the power of an impulse source of pollution in the impurity transfer model. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 1, part 1, pp. 62–66. (in Russian)] DOI: 10.31429/vestnik-17-1-1-62-66 EDN: CXLBCB
- Кочергин, В.С., Кочергин, С.В., Вариационный алгоритм идентификации скорости седиментации взвешенного вещества в море. Экологический вестник научных центров Черноморского экономического сотрудничества, 2020, т. 17, № 4, с. 43–47. [Kochergin, V.S., Kochergin, S.V., Variational algorithm for identifying the rate of sedimentation of suspended matter in the sea. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2020, vol. 17, no. 4, pp. 43–47. (in Russian)] DOI: 10.31429/vestnik-17-4-43-47 EDN: CPAATC
- Кочергин, В.С., Кочергин, С.В., Вариационные процедуры идентификации входных параметров модели переноса пассивной примеси. Экологический вестник научных центров Черноморского экономического сотрудничества, 2021, т. 18, № 3, с. 14–18. [Kochergin, V.S., Kochergin, S.V., Variational procedures for identifying the input parameters of the passive impurity transport model. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2021, vol. 18, no. 3, pp. 14–18. (in Russian)] DOI: 10.31429/vestnik-18-3-41-45 EDN: LVLLXX
- Страхов, В.Н., Метод фильтрации систем линейных алгебраических уравнений – основа для решения линейных задач гравиметрии и магнитометрии. Докл. АН СССР, 1991, т. 320, № 3, с. 595–599. [Strakhov, V.N., The filtering method for systems of linear algebraic equations is the basis for solving linear problems of gravimetry and magnetometry. Doklady AN SSSR = Report. USSR Academy of Sciences, 1991, vol. 320, no. 3, pp. 595–599. (in Russian)]
- Кочергин, С.В., Фомин, В.В., Вариационная идентификация входных параметров модели распространения загрязняющих веществ от подводного источника. Морской гидрофизический журнал, 2019, т. 35, № 6, с. 621–632. [Kochergin, S.V., Fomin, V.V., Variational identification of input parameters for a model of pollutant propagation from an underwater source. Morskoy gidrofizicheskiy zhurnal = Marine Hydrophysical Journal, 2019, vol. 35, no. 6, pp. 621–632.] DOI: 10.22449/0233-7584-2019-6-621-632
Downloads
Submitted
Published
How to Cite
Copyright (c) 2023 Kochergin V.S., Kochergin S.V.
This work is licensed under a Creative Commons Attribution 4.0 International License.