On the inverse problem for the mechanical parameters reconstruction of a viscoelastic layer

Authors

UDC

534.1

DOI:

https://doi.org/10.31429/vestnik-20-4-53-62

Abstract

The problem of forced steady vibrations of a transversely inhomogeneous viscoelastic layer is considered. After the Fourier integral transform applying, the problem is reduced to a boundary value problem for the canonical system of ordinary differential equations, solved by the shooting method. Then the displacement field is found using the inverse Fourier transform.

The problem of restoring the distribution law of mechanical parameters from wavefield data on the top surface of the layer is also considered. The inverse problem is reduced to the sequence of the Fredholm integral equations of the first kind with the smooth kernel. To solve the integral equations, the modified Voyevodin method, applicable in the case of complex-valued kernel and right-hand side, is used. The results of numerical experiments for solving the inverse problem at different oscillations frequencies for various laws of inhomogeneity are presented. It is also shown that the proposed method can also be used to recover the real parameter distribution law in the purely elastic case.

Keywords:

viscoelasticity, inverse coefficient problems, layered structures

Author Info

Pavel S. Uglich

Ph.D (Physical and Mathematical), Assistant professor of the Elasticity Theory Department of Southern Federal University

e-mail: puglich@inbox.ru

References

  1. Aulova, A, Govekar, E, Emri, I., Determination of relaxation modulus of time-dependent materials using neural networks. Mechanics of Time-Dependent Materials, 2017, vol. 21, pp. 331–349. DOI: 10.1007/s11043-016-9332-x
  2. Vasu, R.M, Roy, D., Ultrasound-Mediated Imaging of Soft Materials, IOP Publishing, 2014.
  3. Li Guo-Yang, Cao Yanping, Mechanics of ultrasound elastography. Proc. of The Royal Society A Mathematical Physical and Engineering Sciences, 2017, vol. 473, pp. 1–45. DOI: 10.1098/rspa.2016.0841
  4. Vatul’yan, A.O., Satunovski, P.S., On the determination of elastic moduli in analysis of fluctuations in an inhomogeneous layer. Doklady Physics, 2007, vol. 52, pp. 253–-255. DOI: 10.1134/S1028335807050035
  5. Vatul'yan, A.O., Yavruyan, O.V., Bogachev, I.V., Reconstruction of inhomogeneous properties of orthotropic viscoelastic layer. International Journal of Solids and Structures. 2014, vol. 51, pp. 2238–2243. DOI: 10.1016/j.ijsolstr.2014.02.032
  6. Tamasan, A., Timonov, A., On a new approach to frequency sounding of layered media. Numerical Functional Analysis and Optimization, 2008, vol. 100, pp. 470–486. DOI: 10.1080/01630560802001023
  7. Timonov, A., Iterative solutions of the inverse problems of frequency sounding and electrical prospecting of layered media. Inverse Problems in Science and Engineering. 2020, vol. 22, iss. 8, pp. 1329–1344. DOI: 10.1080/17415977.2013.872101
  8. Titov, S.A., Maev, R.G., Determination of isotropic layer parameters from spatiotemporal signals of an ultrasonic array. Acoustical Physics, 2013, vol. 59, iss. 5, pp. 600–607. DOI: 10.1134/S1063771013050163
  9. Larin, N.V., Skobel’tsyn, S.A., Tolokonnikov, L.A., Determination of the inhomogeneity laws for an elastic layer with preset sound-reflecting properties. Acoustical Physics. 2015, vol. 61, iss. 5, pp. 504–510. DOI: 10.1134/S1063771015050140
  10. Tolokonnikov, L.A., Larin, N.V., Skobel’tsyn, S.A., Modeling an Inhomogeneous Coating of an Elastic Sphere with the Required Sound Reflecting Properties. Mathematical Models and Computer Simulations, 2018, vol. 10. pp. 333–340.
  11. Romanov, V.G., Weng, C.I., Chen, T.C., An inverse problem for a layered elastic plate. Applied Mathematics and Computation, 2003, vol. 137, iss. 2–3, pp. 349–369. DOI: 10.1016/S0096-3003(02)00130-3
  12. Romanov, V.G., On the problem of determining the parameters of a layered elastic medium and an impulse source. Siberian Mathematical Journal, 2008, vol. 49, no. 5, pp. 919–943.
  13. Honglei Zhang, Xuehui Lin, Yanqun Wang, Qian Zhang, Yilan Kang, Identification of elastic-plastic mechanical properties for bimetallic sheets by hybrid-inverse approach. Acta Mechanica Solida Sinica, 2010, vol. 23, iss. 2, pp. 29–35. DOI: 10.1016/S0894-9166(10)60004-3
  14. Willis, R, Lei, Wu, Berthelot, Y., Determination of the complex Young and shear dynamic moduli of viscoelastic materials. The Journal of the Acoustical Society of America, 2001, vol. 109, iss. 2, pp. 611–621. DOI: 10.1121/1.1342003
  15. Vatul’yan, A.O., Uglich, P.S., Reconstruction of inhomogeneous characteristics of a transverse inhomogeneous layer in antiplane vibrations. Journal of Applied Mechanics and Technical Physics, 2014, vol. 55, iss. 3, pp. 499–505. DOI: 10.1134/S0021894414030122
  16. Vatul'yan, A.O., Uglich, P.S., Yavruyan, O.V., Inverse coefficient problem of the variable properties reconstruction for the viscoelastic cylindrical waveguide. ZAMM Journal of applied mathematics and mechanics: Zeitschrift für angewandte Mathematik und Mechanik, 2020, vol. 100. DOI: 10.1002/zamm.201900170
  17. Ворович, И.И., Бабешко, В.А., Динамические смешанные задачи теории упругости для неклассических областей. Москва, Наука, 1979. [Vorovich, I.I., Babeshko, V.A. Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastey = Dynamic Mixed Problems of Elasticity for Non-classical Domains, Moscow, Nauka, 1979. (in Russian)]
  18. Гринченко, В.Т., Мелешко, В.В., Гармонические колебания и волны в упругих телах. Киев, Наукова думка, 1981. [Grinchenko, V.T., Meleshko, V.V. Garmonicheshie kolebaniya i volny v uprugikh telakh = Harmonic vibrations and waves in elastic bodies. Kiev, Naukova dumka, 1981. (in Russian)]
  19. Christensen, R.M. Theory of viscoelasticity: An introduction. N.Y., London, Academic Press, 1971.
  20. Тихонов, А.Н., Арсенин, В.Я., Методы решения некорректных задач. Москва, Наука, 1986. [Tikhonov, A.N., Arsenin, V.Ya. Metody resheniya nekorrektnykh zadach = Incorrect problems solution methods. Nauka, Moscow, 1986. (in Russian)]

Issue

Section

Mechanics

Pages

53-62

Submitted

2023-07-19

Published

2023-12-31

How to Cite

Uglich P.S. On the inverse problem for the mechanical parameters reconstruction of a viscoelastic layer. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2023, vol. 20, no. 4, pp. 53-62. DOI: https://doi.org/10.31429/vestnik-20-4-53-62 (In Russian)