The preliminary heat treatment influence on the rock fracture toughness
UDC
539.375DOI:
https://doi.org/10.31429/vestnik-21-1-26-33Abstract
The change in the dynamic granite fracture toughness as a result of preliminary heat treatment studied. Based on known experimental data, the rate dependences of the fracture toughness of granite pre-treated at temperatures of 25 °C, 100 °C, 250 °C, 450 °C, 600 °C and 850 °C constructed. To describe the material fracture, the incubation time based approach used. With increase in the rate of stress intensity factor, an increase in fracture toughness observed for all temperature values. With increasing temperature, the dynamic fracture toughness decreases, and the incubation time increases. Granite processed at a temperature of 100° has higher fracture toughness under quasi-static loads, but more easily fracture under dynamic impacts compared to granite processed at a temperature of 250 °C.
Keywords:
dynamic fracture toughness, rock fracture, granite, incubation time, loading rateAcknowledgement
References
- Арутюнян, Р.В., Большов, Л.А., Припачкин, Д.А., Семенов, В.Н., Сороковикова, О.С., Фокин, А.Л., Смирнова, М.М., Оценка выброса радионуклидов при аварии на АЭС "Фукусима-1" (Япония) 15 марта 2011 г. Атомная энергия, 2012, т. 112, № 3, с. 159–163. [Arutyunyan, R.V., Bolshov, L.A., Pripachkin, D.A., Semenov, V.N., Sorokovikova, O.S., Fokin, A.L., Smirnova, M.M., Assessment release of radionuclides during the accident at the Fukushima-1 nuclear power plant (Japan) March 15, 2011. Atomnaya energiya = Atomic Energy, 2012, vol. 112, no. 3, pp. 159–163. (in Russian)]
- Свалова, В.Б., Землетрясения в Турции и Сирии 2023 года и геодинамика Кавказско-Анатолийского региона. Известия высших учебных заведений. Геология и разведка, 2023, № 3, с. 28–41. [Svalova, V.B., Earthquakes in Turkey and Syria in 2023 and the geodynamics of the Caucasus-Anatolian region. Izvestiya vysshih uchebnyh zavedenij. Geologiya i razvedka = Proc. of higher educational establishments. Geology and Exploration, 2023, no. 3, pp. 28–41. (in Russian)]
- Yin, T., Li, X., Xia, K., Huang, S., Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock mechanics and rock engineering, 2012, vol. 45, pp. 1087–1094. DOI: 10.1007/s00603-012-0240-3
- Zhang, Q.B., Zhao, J., Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms. International Journal of Fracture, 2014, vol. 189, pp. 1–32. DOI: 10.1007/s10704-014-9959-z
- Kazarinov, N.A., Petrov, Y.V., Cherkasov, A.V., Instability effects of the dynamic crack propagation process. Engineering Fracture Mechanics, 2021, vol. 242, p. 107438. DOI: 10.1016/j.engfracmech.2020.107438
- Yao, W., Xia, K., Zhang, T., Dynamic fracture test of Laurentian granite subjected to hydrostatic pressure. Experimental Mechanics, 2019, vol. 59, pp. 245–250. DOI: 10.1007/s11340-018-00437-4
- Petrov, Y.V., On "quantum" nature of dynamic fracture of brittle solids. Doklady Akademii nauk SSSR, 1991, vol. 321, iss. 1, pp. 66–68.
- Petrov, Y.V., Quantum analogy in the mechanics of fracture of solids. Physics of the Solid State, 1996, vol. 38, iss. 11, pp. 1846–1850.
- Petrov, Y.V., Utkin, A.A., Dependence of the dynamic strength on loading rate. Soviet Materials Science, 1989, vol. 25, iss. 2, pp. 153–156.
- Petrov, Y.V, Morozov, N.F., On the modeling of fracture of brittle solids. ASME Journal of Applied Mechanics, 1994, vol. 61, pp. 710–712.
- Petrov, Y.V., Karihaloo, B.L., Bratov, V.V., Bragov, A.M., Multi-scale dynamic fracture model for quasi-brittle materials. Int. J. of Engineering Science, 2012, vol. 61, pp. 3–9. DOI: 10.1016/j.ijengsci.2012.06.004
- Goldsmith, W., Sackman, J.L., Ewerts, C., Static and dynamic fracture strength of Barre granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976. vol. 13, iss. 11, pp. 303–309. DOI: 10.1016/0148-9062(76)91829-5
- Zhang, Z.X., Kou, S.Q., Yu, J.H., Yu, Y., Jiang, L.G., Lindqvist, P.A., Effects of loading rate on rock fracture. International Journal of Rock Mechanics and Mining Sciences, 1999, vol. 36, iss. 5, pp. 597–611. DOI: 10.1016/S0148-9062(99)00031-5
- Morozov, N.F., Petrov, Y.V., Incubation time based testing of materials. European J.of Mechanics – A/Solids, 2006, vol. 25, pp. 670–676. DOI: 10.1016/j.euromechsol.2006.05.005
- Smirnov, V., Petrov, Y.V., Bratov V., Incubation time approach in rock fracture dynamics. Science China Physics, Mechanics & Astronomy, 2012, vol. 55, pp. 78–85. DOI: 10.1007/s11433-011-4579-3
- Златин, Н.А., Мочалов, С.М., Пугачев, Г.С., Брагов, А.М., Временные закономерности процесса разрушения металлов при интенсивных нагрузках. Физика твердого тела, 1974, т. 16, № 6, c. 1752–1755. [Zlatin, N.A., Mochalov, S.M., Pugachev, G.S., Bragov, A.M., Temporal patterns of the process of metals fracture under intense loads. Fizika tverdogo tela = Physics of Solid State, 1974, vol. 16, no. 6, pp. 1752–1755. (in Russian)]
- Homma, H., Shockey, D.A., Murayama, Y., Response of cracks in structural materials to short pulse loads. Journal of the Mechanics and Physics of Solids, 1983, vol. 31, iss. 3, pp. 261–279. DOI: 10.1016/0022-5096(83)90026-1
- Guo, H, Aziz, N.I., Schmidt, L.C., Rock fracture-toughness determination by the Brazilian test. Engineering Geology, 1993, vol. 33, pp. 177–188. DOI: 10.1016/0013-7952(93)90056-I
- Lim, I.L., Johnston, I.W., Choi, S.K., Stress intensity factors for semi-circular specimens under three-point bending. Engineering Fracture Mechanics, 1993, vol. 44, iss. 3, pp. 363–382. DOI: 10.1016/0013-7944(93)90030-V
- Kang, P., Hong, L., Fazhi, Y., Quanle, Z., Xiao, S., Zhaopeng, L., Effects of temperature on mechanical properties of granite under different fracture modes. Engineering Fracture Mechanics, 2020, vol. 226, p. 106838. DOI: 10.1016/j.engfracmech.2019.106838
Downloads
Submitted
Published
How to Cite
Copyright (c) 2024 Igusheva L.A.
This work is licensed under a Creative Commons Attribution 4.0 International License.