Growing GaInAsSb/GaSb heterostructures with an array of InSb nanoclusters for photovoltaic converters in the spectral range 800 ≤ λ ≤ 6800 nm

Authors

  • Lunina M.L. Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don; Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russian Federation ORCID 0000-0002-9900-3767
  • Lunin L.S. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russian Federation ORCID 0000-0002-5534-9694
  • Donskaya A.V. Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russian Federation ORCID 0000-0002-0548-9517

UDC

538.958

DOI:

https://doi.org/10.31429/vestnik-21-3-84-89

Abstract

The work describes the process of producing cascade thermophotovoltaic (TPV) converters based on a GaInAsSb solid solution grown on a gallium antimonide substrate. A feature of this solid solution is a wide range of immiscibility, which limits their composition and, as a consequence, the range of wavelengths accepted by TPV converters. However, it is possible to expand the stability region of the GaInAsSb solid solution, as well as increase the efficiency of photoconversion due to the absorption of long-wavelength micron photons λ >2.48 μm, by growing ordered InSb nanoclusters on the surface of the sample. As a result of the study, it was noticed that the surface morphology depends on the deposition time of the InSb growth material. The height of nanoclusters is influenced by the crystallization time, the temperature of the growth process and the temperature gradient. Thus, the height of nanoclusters increases linearly with crystallization time and temperature gradient, and increases exponentially with increasing temperature. Thus, the optimal deposition time is 8 minutes. In addition, the photoluminescence spectrum of the Ga0.90In0.10As0.15Sb0.85/GaSb heterostructure was obtained. It shows two peaks caused by radiative recombination in the GaInAsSb layer and InSb nanoclusters. The spectral dependence of the photosensitivity of the heterosystem shows that the wavelength range is in the range 800–6800 nm.

Keywords:

zone recrystallization, nanoclusters, heterostructures, photoluminescence, spectral sensitivity

Acknowledgement

The work was carried out within the framework of state assignments of the Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences no. 122020100254-3, Federal Research Center of the Southern Scientific Center of the Russian Academy of Sciences no. 122020100326-7, as well as within the framework of the initiative research work of the Platov Polytechnical University (NPI) no. PZ-392.

Author Infos

Marina Leonidovna Lunina

PhD, Associate Professor of the Department of Physics and Photonics of the Platov South-Russian State Polytechnic University (NPI); Leading Researcher of the Laboratory of Physics and Technology of Semiconductor Nanoheterostructures for Microwave Electronics and Photonics of the Federal Research Center Southern Scientific Center of the Russian Academy of Sciences

e-mail: marluna14@mail.ru

Leonid Sergeevich Lunin

Doctor of Physical and Mathematical Sciences, Professor of the Department of Physics and Photonics of the Platov South-Russian State Polytechnic University (NPI)

e-mail: lunin_ls@mail.ru

Alina Valentinovna Donskaya

postgraduate student, assistant of the Department of Physics and Photonics of the Platov South-Russian State Polytechnic University (NPI)

e-mail: alina_donskaya.8@mail.ru

References

  1. Timothy, J.C., An overview of thermophotovoltaic generation electricity. Solar Energy Materials & Solar Cells, 2001, vol. 66, pp. 443–452. DOI: 10.1016/S0927-0248(00)00206-3
  2. Andreev, V.M., Khvostikov, V.P., Larionov, V.R., Rumyantsev, V.D., Sorokina, S.V., Shvarts, M.Z., Vasil'ev, V.I., Vlasov, A.S., Tandem GaSb/InGaAsSb thermophotovoltaic cells. Conf. Record of the IEEE Photovoltaic Specialists Conference. Proc. of the 1997 IEEE 26th Photovoltaic Specialists Conference, 1997, pp. 935–938.
  3. Mauk, M.G., Shellenbarger, Z.A., Cox, J.A., Sulima, O., Bett, A.W., Mueller, R.L., Sims, P., McNeely, J.B., DiNetta, L.C., Liquid-phase epitaxy of low-bandgap III-V antimonides for thermophotovoltaic devices. Journal of Crystal Growth, 2000, vol. 211, no. 1–4, pp. 189–193. DOI: 10.1016/S0022-0248(99)00796-4
  4. Левин, Р.В., Власов, А.С., Зотова, Н.В., Матвеев, Б.А., Пушный, Б.П., Андреев, В.М., Свойства эпитаксиальных слоев антимонида галлия, полученных методом газофазной эпитаксии из металлорганических соединений. Физика и техника полупроводников, 2006, т. 40, № 12, c. 1427–1431. [Levin, R.V., Vlasov, A.S., Zotova, N.V., Matveev, B.A., Pushnyi, B.P., Andreev, V.M., Properties of gallium antimonide epitaxial layers grown by MOCVD method. Fizika i tekhnika poluprovodnikov = Semiconductors, 2006, vol. 40, iss. 12, pp. 1427–1431. (in Russian)]
  5. Danilina, E.M., Paschenko, A.S., Estimation of thermodynamic stability of isoperiodic epitaxial structures with GaInSbAs and GaInAsP solid solution. Journal of Physics Conference Series, 2021, vol. 2086, no. 1, p. 012004. DOI: 10.1088/1742-6596/2086/1/012004
  6. Tien, D.N., Kim, J.O., Lee, S.J., Growth of InGaAsSb/GaSb compound for infrared optoelectronic devices. Condensed Matter and Interphases, 2022, vol. 24, no. 2, pp. 250–255.DOI: 10.17308/kcmf.2022.24/9265
  7. Лунина, М.Л., Алфимова, Д.Л., Лунин, Л.С., Пащенко, А.С., Чеботарев, С.Н., Тонкослойные гетероструктуры GaInSbAsPBi/GaSb, полученные из жидкой фазы в поле температурного градиента. Кристаллография, 2017, т. 62, № 1, с. 137–142. [Lunina, M.L., Alfimova, D.L., Lunin, L.S., Pashchenko, A.S., Chebotarev, S.N., Thin-layer GaInSbAsPBi/GaSb heterostructures obtained from the liquid phase in a temperature gradient field. Kristallografiya = Crystallography Reports, 2017, vol. 62, no. 1, pp. 137–142. (in Russian)] DOI: 10.7868/S0023476117010040
  8. Liu, L., Liu, Yg., Zhang, Xm., Liu, B., Zhang, X., Low phase noise and quasi-tunable millimeter-wave generator using a passively InAs/InP mode-locked quantum dot laser. Optoelectronics Letters, 2020, vol. 16, no. 6, pp. 441–445. DOI: 10.1007/s11801-020-0016-z
  9. Bimberg, D., Grundmann, M., Ledentsov, N.N., Quantum dot heterostructures. England, John Wiley & Sons, 1999.

Issue

Section

Physics

Pages

84-89

Submitted

2024-07-20

Published

2024-09-24

How to Cite

Lunina M.L., Lunin L.S., Donskaya A.V. Growing GaInAsSb/GaSb heterostructures with an array of InSb nanoclusters for photovoltaic converters in the spectral range 800 ≤ λ ≤ 6800 nm. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2024, vol. 21, no. 3, pp. 84-89. DOI: https://doi.org/10.31429/vestnik-21-3-84-89 (In Russian)